CO2013: Complex Analysis, Exam-2, Fall 2019

Department of Communication Engineering, National Central University Prof. Dah-Chung Chang (office: E1-311, e-mail: dcchang@ce.ncu.edu.tw)

Notice:

- a) Term grading policy: Exam- $2 \times 20\%$.
- b) Total 100 points (2 pages, see the next page for problems 6-7.) in this exam.
- c) Exam Time: 1:00PM-2:50PM, Nov. 22, 2019.
- 1. (10+10+10 pts)
 - (a) Show that $\cos^{-1} z = -i \log [z + (z^2 1)^{1/2}].$
 - (b) Find $\frac{d}{dz}\cos^{-1}z$.
 - (c) Find the solutions of the equation $\cos z = 2i$.
- 2. (10 pts) Show that

$$\oint_{|z|=1} \bar{z}dz = \oint_{|z|=1} \frac{1}{z}dz.$$

3. (10 pts) Evaluate

$$\int_C (z^2 - z + 2) dz$$

from i to 1 along the contour C given in Fig. 1.

Fig. 1: Problem 3.

- 4. (10 pts) Show that an upper bound for the absolute value of the integral $\int_C \frac{1}{z^2+1} dz$ is $\frac{1}{3\sqrt{10}}$, where C is the line segment from z=3 to 3+i.
- 5. (15 pts) Evaluate $\oint_{C:|z|=1} \frac{1}{z^3 + 2iz^2} dz$.

6. (10 pts) Evaluate $\oint_C \frac{8z-3}{z^2-z} dz$, where C is the "figure-eight" contour shown in Fig. 2.

Fig. 2: Problem 6.

7. (15 pts) Evaluate $\oint_C \frac{e^{iz}}{(z^2+1)^2} dz$, where C is the "figure-eight" contour shown in Fig. 3.

Fig. 3: Problem 7.