CO2013: Complex Analysis, Exam-3, Fall 2021

Department of Communication Engineering, National Central University

Prof. Dah-Chung Chang (office: E1-311, e-mail: dcchang@ce.ncu.edu.tw)

Notice:

- a) Term grading policy: Exam-3×25%.
- b) Total 100 points in this exam.
- c) Exam Time: 1:00PM-2:50PM, Dec. 16, 2021.
- 1. (10 pts) Show that the following series converge.

(a)
$$\sum_{n=0}^{\infty} \frac{n^2}{4^n},$$

- (b) The sequence $\{z_n\}_1^{\infty}$ converges if and only if the series $\sum_{n=1}^{\infty} (z_{n+1} z_n)$ converges.
- 2. (10 pts) Find the circle and radius of convergence of the following series:

(a)
$$\sum_{n=0}^{\infty} \frac{(z-2-i)^{2n}}{2^{3n}}$$
,

(b)
$$\sum_{n=0}^{\infty} \frac{1}{n} \left(\frac{i}{1+i} \right) (z-i)^n$$
.

3. (15 pts) Compute
$$\oint_{C:|z|=1} \frac{e^{z/2} \sin z}{z^5} dz$$
.

4. (30 pts) Find the Taylor series centered at the indicated point z_0 for the given function and give the radius of convergence.

(a)
$$(z-1)e^{-3z}$$
, $z_0 = 1$

(b)
$$\frac{z+1}{z(z-2)^2}$$
, $z_0 = 0$

- 5. (20 pts) Find the Laurent series for $f(z)=\frac{1}{z+z^2}$ in the regions of (a) 1<|z| (b) 0<|z+1|<1.
- 6. (15 pts) Find the Laurent series for $f(z) = \frac{1}{(z-2)(z-3)}$ in the region of 1 < |z-1| < 2.