Notice:

- a) Term grading policy: Exam- $2 \times 30\%$.
- b) Total 100 points in this exam.
- c) Exam Time: 1:00PM-2:50PM, Dec. 8, 2022.
- 1. (10 pts) Evaluate $\oint_C (z^2 + e^z + \operatorname{Re}(z))dz$, where C is the triangle with vertices z = 0, z = 1 + 2i, and z = 1.
- 2. (20 pts) Evaluate the given integral along the indicated closed contour(s):

(a)
$$\oint_C \frac{e^{-z} \sin z}{z^3} dz$$
 for $C : |z - 1| = 3$,
(b) $\oint_C \frac{z^2 + 3z + 2i}{z^2 + 3z - 4} dz$ for (i) $C : |z| = 2$, (ii) $C : |z + 5| = 3$.

- 3. (20 pts) Find the circle of convergence of the following series: (a) $\sum_{k=0}^{\infty} \frac{4^k}{3k+7} (z-2+3i)^{2k}$, (b) the Taylor series of $f(z) = \csc z$ centered at $z_0 = 3+2i$.
- 4. (15 pts) Find the Maclaurin series and give the radius of convergence for the function $f(z) = \frac{z-7}{z^2 2z 3}$.
- 5. (15 pts) The error function $\operatorname{erf}(z)$ is defined by the integral $\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-t^2} dt$. Find the Maclaurin series for $\operatorname{erf}(z)$.
- 6. (20 pts) Find the Laurent series for the function $f(z) = \frac{7z-3}{z^2-z}$ centered at $z_0 = 1$.