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Unit 1-1 

Complex Numbers



Definition of Complex Numbers
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Definition of Complex Plane
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Operation of Complex Numbers
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Operation of Complex Numbers
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Complex Conjugate

CE/NCU D.C.Chang 7Complex Analysis: Unit-1.1



Modulus
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Polar Form
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Principal Argument
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Multiplication and Division of Polar Form

With polar form,
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Notation of Euler’s Equation

• Euler’s equation enables us to write the polar form of a complex number as

• We can drop the awkward “cis” artifice and use, as the standard polar 

representation,
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Complex Exponential Functions
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Proof of Euler’s Equation

Theorem

Proof:
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Example: Show that Euler’s equation is formally consistent with the complex Taylor 

series expansions 

Solution
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Property of Euler’s Equation

Property

Example: Show that                                   and                                   .  

Sol:
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De Moivre’s Formula

Note: Integer powers of z

Example:

Sol:
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Multiple-Angle Formula
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Example: Compute the integral

Solution
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Integer Powers of a Complex Number

Example 1: Compute

Example 2: Compute 

Example 3: Compute

Sol:   
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Fractional Powers of a Complex Number - Nth Roots of Unity

These n values are called the nth roots of unity.

Example:

Solution: 
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Root of a Complex Number
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Remark:

Example 1: Find all the cube roots of 8i

Sol:

Example 2: Compute 

Sol:
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Solving Complex Coefficients Equations

Example 1: Solve

Solution: 

Ex1: solve 

Sol:

Ex2: solve

Sol:

CE/NCU D.C.Chang 24

4
324 0x  

2
(6 2 ) 17 6 0z i z i    

2
2 (1 ) 0z z i   

Complex Analysis: Unit-1.1



Topology of Complex Numbers

Define a curve to be the range of a continuous complex-valued function z(t) defined 

on the interval [a, b]. That is, a curve C is the range of a function given by z(t) = 

(x(t) , y(t)) = x(t) + iy(t) , for             ， where both x(t) and y(t) are continuous real-

valued functions. If both x(t) and y(t) are differentiable, we say that the curve is 

smooth. 

Note that, with this parametrization, we are specifying a direction for the curve C, 

saying that C is a curve that goes from the initial point z(a) =(x(a), y(a))=x(a)+iy(a) 

to the terminal point z(b)= (x(b), y(b)) = x(b) + iy(b). 

A curve C have the property that z(a) = z(b) is said to be a closed curve.

Example: The curve
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Example: 
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Definition of Disk
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Neighborhood

Definition: An open circular disk centered at z0 is also called a neighborhood of z0, 

or, an Ɛ-neighborhood of z0.

It is the set of all points satisfying the inequality {z : |z – z0 | <ε} and is denoted

Dε(z0).
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Deleted Neighborhood

Definition:  Occasionally, we will need to use a neighborhood of z0 that also 

excludes z0. Such a neighborhood is defined by the simultaneous inequality 0 < |z − 

z0| < Ɛ and is called a deleted neighborhood of z0 (punctured disk). 

Example: |z| < 1 defines a neighborhood of the origin, whereas 0 < |z| < 1

defines a deleted neighborhood of the origin.
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Interior and Boundary Points

• The point z0 is said to be an interior point of the set S provided that there exists 

an ε-neighborhood of z0 that contains only points of S.

• z0 is called an exterior point of the set S if there exists an ε-neighborhood of z0

that contains no points of S. 

• If z0 is neither an interior point nor an exterior point of S , then it is called a 

boundary point of S and has the property that each ε-neighborhood of z0

contains both points in S and points not in S.
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Open Set, Closed Set, and Connected Set

• Open Set: A set S is called an open set if every point of S is an interior point of 

S.

• Closed Set: A set S is called a closed set if it contains all its boundary points.

• Connected Set: A set S is said to be a connected set if every pair of points z1

and z2 contained in S can be joined by a curve that lies entirely in S.
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Domain and Region

• We call a connected open set a domain.

Ex: The open unit disk D1(0) = {z : Izl < 1} is a domain.

The closed unit disk           = {z : Izl 1} is not a domain.

• A domain, together with some, none, or all its boundary points, is called a 

region. A set formed by taking the union of a domain and its boundary is called 

a closed region.

Ex: The horizontal strip {z : 1 < Im (z)    2} is a region.

• A set S is said to be a bounded set if it can be completely contained in some 

closed disk. A set that cannot be enclosed by any closed disk is called an 

unbounded set.

Ex: The rectangle given by {z : Ixl <4 and Iyl< 3} is bounded because it is 

contained inside the disk          . 
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