Unit-1 Complex Analytic Functions

Prof. Dah-Chung Chang (張大中) Department of Communication Eng. National Central University dcchang@ce.ncu.edu.tw

Unit 1-1 Complex Numbers

Definition of Complex Numbers

Definition 1.1 A complex number z is an ordered pair (x, y) of real numbers x and y, written as

$$z = f(x, y)$$

where x is called the real part and y the imaginary part of z, written as

$$x = Re\{z\}, \quad y = Im\{z\}$$

Notes:

1. Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal. Example:

$$(2,3) \neq (3,2)$$

- 2. (0, 1) is called the imaginary unit and is denoted by i, i = (0, 1).
- 3. Definition of $i = \sqrt{-1}$ and $i^2 = -1$.

CE/NCU D.C.Chang

Complex Analysis: Unit-1.1

Definition of Complex Plane

Definition 1.2 z-plane: We can represent the number z = x + iy by a position vector in the xy plane. When the xy plane is used for displaying complex numbers, it is called the complex plane, or the z plane.

Operation of Complex Numbers

Let z = x + iy.

• Addition

$$z_1 + z_2 = (x_1, y_1) + (x_2, y_2)$$
$$= (x_1 + x_2, y_1 + y_2)$$

• Subtraction

$$z_1 - z_2 = (x_1, y_1) - (x_2, y_2)$$
$$= (x_1 - x_2, y_1 - y_2)$$

• Multiplication

$$z_1 z_2 = (x_1, y_1)(x_2, y_2)$$

= (_____, ____)

• Division

$$\frac{z_1}{z_2} = \frac{(x_1, y_1)}{(x_2, y_2)} = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}, \text{ for } z_2 \neq 0.$$

CE/NCU D.C.Chang

Complex Analysis: Unit-1.1

Operation of Complex Numbers

The familiar commutative, associative, and distributive laws hold for complex numbers:

• Commutative laws:

$$z_1 + z_2 = z_2 + z_1, \quad z_1 z_2 = z_2 z_1$$

• Associative laws:

$$z_1 + (z_2 + z_2) = (z_1 + z_2) + z_3, \quad z_1(z_2 z_3) = (z_1 z_2) z_3$$

• Distributive laws:

$$z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$$

Complex Conjugate

Definition 1.3 The conjugate of z, denoted \overline{z} , is the complex number (x, -y) = x - iy.

Note: $z = x + iy, \bar{z} = x - iy,$ $\implies x = \frac{1}{2}(z + \bar{z}), y = \frac{1}{2}(z - \bar{z}), Re\{iz\} = -Im\{z\}, Im\{iz\} = Re\{z\}.$

Properties:

Modulus

Definition 1.4 Modulus of z, $|z| = \sqrt{x^2 + y^2}$.

Note: $|z|^2 = (Re\{z\})^2 + (Im\{z\})^2$.

Properties:

- $|z|^2 = z\bar{z}$ and $|z| = \sqrt{z\bar{z}}$
- $|z_1 z_2| = |z_1| |z_2|$ and $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$
- $|z^2| = |z|^2$

Triangle Inequality: $|z_1 + z_2| \le |z_1| + |z_2|$

Generalized triangle inequality:

$$\left|\sum_{k=1}^{N} z_k\right| \le \sum_{k=1}^{N} |z_k|$$

Example 1.5 $z_1 = 1 + i, z_2 = -2 + 3i$ $|z_1 + z_2| = |-1 + 4i| = \sqrt{17} \doteq 4.123 < \sqrt{2} + \sqrt{13} \doteq 5.020$

Polar Form

Definition 1.6 In addition to the xy-coordinate in the complex plane, we also employ the polar coordinates r, θ defined by

$$x = r\cos\theta$$
 and $y = r\sin\theta$

the polar form of z = x + iy at the point P

$$z = r(\cos\theta + i\sin\theta) \triangleq r\mathrm{cis}\theta$$

where r is the absolute value of z, r = |z|,

$$r = \sqrt{x^2 + y^2} = \sqrt{z\bar{z}}$$

and θ is the argument of z, $\theta = \arg z$

$$tan\theta = \frac{y}{x}$$

 θ is the directed angle from the positive x-axis to \overline{OP} (counterclockwise).

Note: $\theta = \alpha + 2n\pi, -\pi < \alpha \le \pi, n = \pm 1, \pm 2, \dots$ (integer multiples of 2π)

CE/NCU D.C.Chang

Principal Argument

Definition 1.7 The principal argument of z is defined as Arg z, where $-\pi < \alpha = \text{Arg } z \leq \pi$.

Note: arg $z = \text{Arg } z + 2n\pi, n = 0, \pm 1, \pm 2, \dots$

EXAMPLE 1.7 The complex number -1 - i, which lies in the third quadrant, has principal argument $-3\pi/4$. That is,

 $\operatorname{Arg}(-1-i) = -3\pi/4$

Multiplication and Division of Polar Form

Suppose

$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$$
 and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$,

where θ_1 and θ_2 are any arguments of z_1 and z_2 , respectively. Then

$$z_1 z_2 = r_1 r_2 \left[\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 + i \left(\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2 \right) \right]$$

and, for $z_2 \neq 0$,

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2 + i \left(\sin \theta_1 \cos \theta_2 - \cos \theta_1 \sin \theta_2 \right) \right].$$

With polar form,

$$z_1 z_2 = r_1 r_2 \left[\cos \left(\theta_1 + \theta_2\right) + i \sin \left(\theta_1 + \theta_2\right) \right] \frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos \left(\theta_1 - \theta_2\right) + i \sin \left(\theta_1 - \theta_2\right) \right].$$

 $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$ and

$$\operatorname{arg}\left(\frac{z_1}{z_2}\right) = \operatorname{arg}(z_1) - \operatorname{arg}(z_2).$$

Figure 1.11 $\arg(z_1 z_2) = \theta_1 + \theta_2$

 $^{\ddagger}\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ and $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$

CE/NCU D.C.Chang

Complex Analysis: Unit-1.1

Notation of Euler's Equation

• Euler's equation enables us to write the polar form of a complex number as

$$z = r \operatorname{cis} \theta = r(\cos \theta + i \sin \theta) = r e^{i\theta}$$

• We can drop the awkward "cis" artifice and use, as the standard polar representation,

$$z = re^{i\theta} = |z|e^{i\arg z}$$

Note: More generally, the circle $|z - z_0| = R$, whose center is z_0 and whose radius is R, has the parametric representation

$$\mathbf{z} = \mathbf{z}_0 + Re^{i\theta} \qquad 0 \le \theta \le 2\pi$$

Example 1.5.1 The equation |z - 1 + 3i| = 2 represents the circle whose center is $z_0 = (1, -3)$ and whose radius is R = 2.

Complex Exponential Functions

• Property

$$e^{0} = 1,$$

$$e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}},$$

$$\frac{e^{z_{1}}}{e^{z_{2}}} = e^{z_{1}-z_{2}},$$

$$(e^{z_{1}})^{n} = e^{nz_{1}} \text{ for } n = 0, \pm 1, \pm 2, \dots.$$

• Let
$$z=x+iy$$

$$e^z = e^{x+iy} = e^x e^{iy}$$

• Differentiation

$$\frac{de^z}{dz} = e^z$$

• The complex exponential function is periodic.

$$e^{z+2\pi i} = e^z$$

CE/NCU D.C.Chang

Complex Analysis: Unit-1.1

Proof of Euler's Equation

Theorem

If z = x + iy, then e^z is defined to be the complex number $e^z = e^x(\cos y + i\sin y).$

Proof:

Example: Show that Euler's equation is formally consistent with the complex Taylor series expansions

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \cdots,$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \cdots,$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \cdots.$$

Solution

Property of Euler's Equation

Property

$$\cos\theta = \operatorname{Re}\left\{\frac{e^{i\theta} + e^{-i\theta}}{2}\right\} \qquad \sin\theta = \operatorname{Im}\left\{\frac{e^{i\theta} - e^{-i\theta}}{2i}\right\}$$
$$z_1 z_2 = r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$
$$\frac{z_1}{z_2} = \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)} \qquad \overline{z} = r e^{-i\theta}$$

Example: Show that $\cos(15^{\circ}) = \frac{\sqrt{6} + \sqrt{2}}{4}$ and $\sin(15^{\circ}) = \frac{\sqrt{6} - \sqrt{2}}{4}$. **Sol:**

De Moivre's Formula

Note: Integer powers of z

$$z^n = r^n \left(\cos n\theta + i\sin n\theta\right).$$

When n = 0, we get the familiar result $z^0 = 1$.

Example: Compute z^3 for $z = -\sqrt{3} - i$. Sol:

Multiple-Angle Formula

By De Moivres Formula:

$$(cos0 + i sin 0)^{\frac{1}{2}} = cos a 0 + i sin 00 = (cos0 + i sin 0) + i (2cos0 sin 0).$$

$$(cos0 + i sin 0)^{\frac{1}{2}} = (cos0 + i sin 0) + i (2cos0 sin 0) + i (2cos0 sin 0) = (cos0 + i sin 0) [(cos^2 0 - sin^2 0) + i (2cos0 sin 0)]$$

$$= (cos^3 0 - (cos0 sin^2 0 - 2 (cos0 sin^2 0 + i (cos^2 0 - sin^2 0) + 2 (cos^2 0 sin 0))$$

$$= (cos^3 0 - 3 (cos0 - sin^2 0 + 2 (cos^2 0 sin 0))$$

$$= (cos^3 0 - 3 (cos0 - (1 - cos^2 0))$$

$$= 4 (cos^3 0 - 3 (cos0 - (1 - cos^2 0))$$

$$= 4 (cos^3 0 - 3 (cos0 - (1 - cos^2 0))$$

$$= - sin^3 0 + 3 sin 0 (1 - sin^2 0)$$

$$= 3 sin 0 - 4 sin^3 0.$$

$$[x + cos^3 0 - 10 cos^3 0 sin^2 0 + 5 (cos0 sin^4 0).$$

CE/NCU D.C.Chang

Example: Compute the integral

$$\int_0^{2\pi} \cos^4\theta \, d\theta$$

Solution

Integer Powers of a Complex Number

Example 1: Compute $(1+i)^{20}$

Example 2: Compute $(-\sqrt{3}-i)^{30}$

Example 3: Compute
$$(a) \int_{0}^{2\pi} \cos^{8} \theta d\theta$$
 $(b) \int_{0}^{2\pi} \sin^{6}(2\theta) d\theta$
Sol:

Fractional Powers of a Complex Number - Nth Roots of Unity

Consider
$$z = 1$$
, then $|z| = r = 1$
 $1^{\frac{1}{n}} = \sqrt[n]{1} \triangleq \omega^k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, \quad k = 0, 1, \dots, n-1$
These *n* values are called the *n*th roots of unity.

Example: $\sqrt[8]{1} = ?$

Solution:

Root of a Complex Number

If Z = W" (n=1, 1, ...), then to each value of w there corresponds one value of Z. Each of these values is called an oth root of B. ZAF w=1/2 Note: Wis multi-valued. (n-valued) et Z= MUSO+isino) or form $W = R(\cos\phi + i \sin\phi)$ Thom $\omega^n = R^n (\cos n\phi + i \sin n\phi) = Z$ +>BT, B=0,1,2,..., n-1 Otola 172=1

Remark:

If
$$z = r \operatorname{cis} \theta$$
, $\theta = \operatorname{Arg} z$, $r \in R$
$$z^{\frac{1}{n}} = \sqrt[n]{r} \operatorname{cis}\left(\frac{\operatorname{Arg} z + 2k\pi}{n}\right), \quad k = 0, 1, 2, \cdots, n-1$$

Example 1: Find all the cube roots of 8*i*

Sol:

Example 2: Compute
$$\left(\frac{2i}{1+i}\right)^{\frac{1}{6}}$$

Sol:

Solving Complex Coefficients Equations

Example 1: Solve $x^4 + 324 = 0$ Solution:

Ex1: solve $z^2 - (6-2i)z + 17 - 6i = 0$ Sol:

Ex2: solve $z^2 + 2z + (1-i) = 0$ **Sol:**

CE/NCU D.C.Chang

Complex Analysis: Unit-1.1

Topology of Complex Numbers

Define a curve to be the range of a continuous complex-valued function z(t) defined on the interval [a, b]. That is, a curve C is the range of a function given by z(t) = (x(t), y(t)) = x(t) + iy(t), for $a \le t \le b$, where both x(t) and y(t) are continuous realvalued functions. If both x(t) and y(t) are differentiable, we say that **the curve is smooth**.

Note that, with this parametrization, we are specifying a direction for the curve C, saying that C is a curve that goes from the **initial point** z(a) = (x(a), y(a)) = x(a) + iy(a) to the **terminal point** z(b) = (x(b), y(b)) = x(b) + iy(b).

A curve C have the property that z(a) = z(b) is said to be a **closed curve**.

Example: The curve $x(t) = \sin 2t \cos t$, $y(t) = \sin 2t \sin t$ for $0 \le t \le 2\pi$,

Example: The simple closed curve $z(t) = z_0 + Re^{it}$, for $0 \le t \le 2\pi$.

We use the notation $C_R^+(z_0)$ to indicate that the parametrization we chose for this simple closed curve resulted in a positive orientation; $C_R^-(z_0)$ denotes the same circle, but with a negative orientation. (In both cases, *counterclockwise* denotes the positive direction.) Using notation that we have already introduced, we get $C_R^-(z_0) = -C_R^+(z_0)$.

Definition of Disk

Opendisk of radius (70 about a. is denoted as Dp(a)= {2:12-a1<p}. Closed disk of radius & centered at a $D_{p}(a) = \{z: |z-a| \le p\}$ punctured ask of radius pcentered at a. Do(a) = { 2:0<12-a1<p}. $\mathcal{P}_{p}^{*}(a)$ a is punctured

Neighborhood

Definition: An open circular disk centered at z₀ is also called a **neighborhood** of z₀, or, an **E-neighborhood** of z₀.

It is the set of all points satisfying the inequality $\{z : |z - z_0| < \epsilon\}$ and is denoted $D\epsilon(z_0)$.

EXAMPLE 1.23 The solution sets of the inequalities |z| < 1, |z - i| < 2, and |z + 1 + 2i| < 3 are neighborhoods of the points 0, *i*, and -1 - 2i, with radii 1, 2, and 3, respectively. They can also be expressed as $D_1(0)$, $D_2(i)$, and $D_3(-1-2i)$.

CE/NCU D.C.Chang

Complex Analysis: Unit-1.1

Deleted Neighborhood

Definition: Occasionally, we will need to use a neighborhood of z_0 that also excludes z_0 . Such a neighborhood is defined by the simultaneous inequality $0 < |z - z_0| < \varepsilon$ and is called a **deleted neighborhood** of z_0 (punctured disk).

Example: |z| < 1 defines a neighborhood of the origin, whereas 0 < |z| < 1 defines a deleted neighborhood of the origin.

Interior and Boundary Points

- The point z₀ is said to be an **interior point** of the set S provided that there exists an ε-neighborhood of z₀ that contains only points of S.
- z₀ is called an **exterior point** of the set S if there exists an ε-neighborhood of z₀ that contains no points of S.
- If z₀ is neither an interior point nor an exterior point of S, then it is called a boundary point of S and has the property that each ε-neighborhood of z₀ contains both points in S and points not in S.

Open Set, Closed Set, and Connected Set

- Open Set: A set S is called an open set if every point of S is an interior point of S.
- **Closed Set**: A set S is called a closed set if it contains all its boundary points.
- **Connected Set**: A set S is said to be a connected set if every pair of points z1 and z2 contained in S can be joined by a curve that lies entirely in S.

The annulus $A = \{z : 1 < |z| < 2\}$ is a connected set.

Domain and Region

• We call a connected open set a **domain**.

Ex: The open unit disk $D_1(0) = \{z : |z| < 1\}$ is a domain. The closed unit disk $\overline{D}_1(0) = \{z : |z| \le 1\}$ is not a domain.

A domain, together with some, none, or all its boundary points, is called a region. A set formed by taking the union of a domain and its boundary is called a closed region.

Ex: The horizontal strip $\{z : 1 < \text{Im}(z) \le 2\}$ is a region.

- A set S is said to be a **bounded set** if it can be completely contained in some closed disk. A set that cannot be enclosed by any closed disk is called an **unbounded set**.
 - **Ex**: The rectangle given by {z : |x| < 4 and |y| < 3} is bounded because it is contained inside the disk $\overline{D}_5(0)$.