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Polynomial and Rational Functions
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Taylor Form of a Polynomial
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Poles and Zeros

Ex:

Sol:

We see that the only poles of R(z) are at z=i of multiplicity 2 and z=-i of multiplicity 1.
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Partial Fractional Decomposition

Theorem
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Ex 1: Reproduce the partial fraction decomposition of the rational function

Sol:
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Ex 2: Reproduce the partial fraction decomposition of the rational function

Sol:
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Complex Exponential Functions

Definition

Theorem

Proof:
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Example: Find number                  such that                  . 

Solution:
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Definition of Complex Trigonometric Functions

Definition

Periodicity

Proof:
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Solution:
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Complex Trigonometric Identities

Proof:
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Derivatives of Complex Trigonometric Functions

Proof:
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Complex Trigonometric Functions and Hyperbolic Functions

Definition: Hyperbolic Functions

Proof
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Complex Hyperbolic Functions and Their Derivatives

Definition

Proof:
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Relations Between Complex Sine/Cosine and Their Hyperbolic Functions

Proof:

Solution:
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Logarithmic Functions
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Algebraic Properties of Logarithm

Theorem

Proof of (i):
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Solution:
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Solution:
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Analyticity of the Ln Function

• The principal value of the complex logarithm Ln z is discontinuous at the point z 

= 0 since this function is not defined there. This function is also discontinuous at 

every point on the negative real axis.

• The function Ln z is continuous on the set consisting of the complex plane 

excluding the non-positive real axis.

• The real and imaginary parts of Ln z are                                                   and v(x, 

y) = Arg(z), respectively. From multivariable calculus we have that the function            

u(x,y) is continuous at all points in the plane except (0, 0) and we 

have that the function v(x, y) = Arg(z) is continuous on the domain |z| > 0, −π <

arg(z) < π.

• Thus, the function      defined by

is continuous on the domain |z| > 0, −π < Arg(z) < π, where r = |z| and θ = Arg(z).

• The function     agrees with the principal value of the complex logarithm Ln z, 

which is a branch of the multiple-valued function F(z) = ln z. 
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Branch and Branch Cut

Branch: A branch of a multiple-valued function f is any single-valued function F that 

is analytic in some domain at each point z of which the value F(z) is one of the 

values of f .

Principal Branch: For each fixed α, the single-valued function

is a branch of the multiple-valued function

The function

is called the principal branch. 

Branch Cut: A branch cut is a portion of a line or curve that is introduced in order to 

define a branch F of a multiple-valued function f . Points on the branch cut for F are 

singular points of F, and any point that is common to all branch cuts of f is called a 

branch point.
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Derivative of Ln z

Theorem

The principal branch     of the complex logarithm defined by                                     

is an analytic function and its derivative is given by:

Proof:
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Solution:
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Complex Powers

Definition

General powers of a complex number are defined by the formula

Since ln z is infinitely many-valued,      will, in general, be multivalued. The particular 

value

is called the principal value of    . 
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Solution:

EX:
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Solution:
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Derivative of Complex Powers
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Inverse Trigonometric Functions

Theorem

Proof of             :

Note: 
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