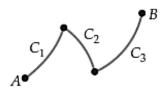
Unit-2 Complex Integration

張大中 中央大學 通訊工程系 dcchang@ce.ncu.edu.tw

Contour

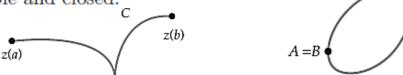
Terminology Suppose a curve C in the plane is parametrized by a set of equations x = x(t), y = y(t), $a \le t \le b$, where x(t) and y(t) are continuous real functions. Let the initial and terminal points of C, that is, (x(a), y(a)) and (x(b), y(b)), be denoted by the symbols A and B, respectively. We say that:

- (a) Smooth curve and simple
- (i) C is a smooth curve if x' and y' are continuous on the closed interval [a, b] and not simultaneously zero on the open interval (a, b).
- (ii) C is a **piecewise smooth curve** if it consists of a finite number of smooth curves C_1, C_2, \ldots, C_n joined end to end, that is, the terminal point of one curve C_k coinciding with the initial point of the next curve C_{k+1} .



- (b) Piecewise smooth curve and simple
- (iii) C is a simple curve if the curve C does not cross itself except possibly at t = a and t = b.
- (iv) C is a closed curve if A = B.

(v) C is a simple closed curve if the curve C does not cross itself and A = B; that is, C is simple and closed.



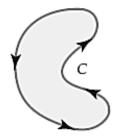
Curve C is not smooth

(d) Simple closed curve

(c) Closed but not simple

Contour

- In complex analysis, a piecewise smooth curve *C* is called a **contour** or path.
- We define the positive direction on a contour C to be the direction on the curve corresponding to increasing values of the parameter *t*. It is also said that the curve C has **positive orientation (counterclockwise direction)**.



Positive direction

• The **negative direction** on a contour C is the direction opposite the positive direction. If C has an opposite orientation, it is denoted by -C. On a simple closed curve, the negative direction corresponds to the **clockwise direction**.

Integral of Complex Function Along a Contour

Definition

Suppose that the equation z = z(t) ($a \le t \le b$) represents a contour C, extending from a point $z_1 = z(a)$ to a point $z_2 = z(b)$. We assume that f[z(t)] is piecewise continuous on the interval $a \le t \le b$ and refer to the function f(z) as being piecewise continuous on C. We then define the line integral, or contour integral, of f along C in terms of the parameter t:

$$\int_C f(z) dz = \int_a^b f[z(t)]z'(t) dt.$$

Note that the integral along -C,

$$z = z(-t) \qquad (-b \le t \le -a)$$

$$\int_{-C} f(z) \, dz = \int_{-b}^{-a} f\left[z(-t)\right] \frac{d}{dt} z(-t) \, dt = -\int_{-b}^{-a} f\left[z(-t)\right] z'(-t) \, dt$$

where z'(-t) denotes the derivative of z(t) with respect to t, evaluated at -t. Making the substitution $\tau = -t$ in this last integral, we obtain the expression

$$\int_{-C} f(z)\,dz = -\int_a^b f[z(\tau)]z'(\tau)\,d\tau, \quad \text{this means that} \quad \int_{-C} f(z)\,dz = -\int_C f(z)\,dz.$$

х

Contour Integral

Suppose that f(z) = u(z) + iv(z) and that z(t) = x(t) + iy(t) is a parametrization for the contour C. Then

$$\int_{C} f(z) dz = \int_{a}^{b} f(z(t)) z'(t) dt
= \int_{a}^{b} [u(z(t)) + iv(z(t))] [x'(t) + iy'(t)] dt
= \int_{a}^{b} [u(z(t)) x'(t) - v(z(t)) y'(t)] dt
+ i \int_{a}^{b} [v(z(t)) x'(t) + u(z(t)) y'(t)] dt
= \int_{a}^{b} (ux' - vy') dt + i \int_{a}^{b} (vx' + uy') dt,$$

$$\int_{C} f(z) dz = \int_{C} u dx - v dy + i \int_{C} v dx + u dy$$

Properties of Contour Integral

Suppose the functions f and g are continuous in a domain D, and C is a smooth curve lying entirely in D. Then

- (i) $\int_C kf(z) dz = k \int_C f(z) dz$, k a complex constant.
- (ii) $\int_C [f(z) + g(z)] dz = \int_C f(z) dz + \int_C g(z) dz$.
- (iii) $\int_C f(z) dz = \int_{C_1} f(z) dz + \int_{C_2} f(z) dz$, where C consists of the smooth curves C_1 and C_2 joined end to end.
- (iv) $\int_{-C} f(z) dz = -\int_{C} f(z) dz$, where -C denotes the curve having the opposite orientation of C.

Line Integral of a General Complex Function

Dependence on path.

If we integrate a given function f(z) from a point z_0 to a point z_1 along different paths, the integrals will in general have different values. In other words, a complex line integral depends not only on the endpoints of the path but in general also on the path itself.

Let C be a piecewise smooth path, represented by z = z(t), where $a \le t \le b$. Let f(z) be a continuous function on C. Then

$$\int_{C} f(z) dz = \int_{a}^{b} f[z(t)]\dot{z}(t) dt \qquad \left(\dot{z} = \frac{dz}{dt}\right).$$

Steps in Calculation:

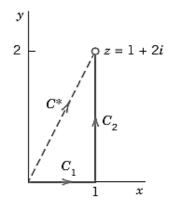
- (A) Represent the path C in the form z(t) ($a \le t \le b$).
- **(B)** Calculate the derivative $\dot{z}(t) = dz/dt$.
- (C) Substitute z(t) for every z in f(z) (hence x(t) for x and y(t) for y).
- **(D)** Integrate $f[z(t)]\dot{z}(t)$ over t from a to b.

Ex 1:

Evaluate (a) $\int_C xy^2 dx$, (b) $\int_C xy^2 dy$, and (c) $\int_C xy^2 ds$, where the path of integration C is the quarter circle defined by $x=4\cos t,\ y=4\sin t,\ 0\leq t\leq \pi/2.$

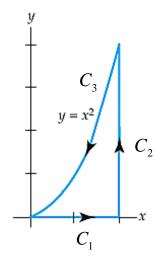
Solution

Ex 2: Integrate $f(z) = \text{Re } z = x \text{ from } 0 \text{ to } 1 + 2i \text{ (a) along } C^*$, (b) along C consisting of C_1 and C_2 . *Solution*.



Ex 3: Evaluate $\oint_C y^2 dx - x^2 dy$, where C is the closed curve

Solution:



$$C = C_1 + C_2 + C_3$$

ML Inequality

If f is continuous on a smooth curve C and if $|f(z)| \leq M$ for all z on C, then $|\int_C f(z) dz| \leq ML$, where L is the length of C.

Proof:

The complex integral of f on C is

$$\int_{C} f(z) dz = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(z_{k}^{*}) \Delta z_{k}.$$

It follows from the form of the triangle inequality

$$\left|\sum_{k=1}^{n} f(z_{k}^{*}) \Delta z_{k}\right| \leq \sum_{k=1}^{n} |f(z_{k}^{*})| |\Delta z_{k}| \leq M \sum_{k=1}^{n} |\Delta z_{k}|.$$

$$\frac{\mathcal{C}}{\sum_{k=1}^{n} |\Delta z_{k}|} \leq \text{the largth of } \mathcal{C} = L$$

Because $|\Delta z_k| = \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}$, we can interpret $|\Delta z_k|$ as the length of the chord joining the points z_k and z_{k-1} on C. Moreover, since the sum of the lengths of the chords cannot be greater than the length L of C, the inequality (14) continues as $|\sum_{k=1}^n f(z_k^*)\Delta z_k| \leq ML$. Finally, the continuity of f guarantees that $\int_C f(z) dz$ exists, and so if we let $||P|| \to 0$, the last inequality yields $|\int_C f(z) dz| \leq ML$.

Ex 1:

$$\left| \int_c \frac{1}{z^2 + 1} \ dz \right| \le \frac{1}{2\sqrt{5}},$$

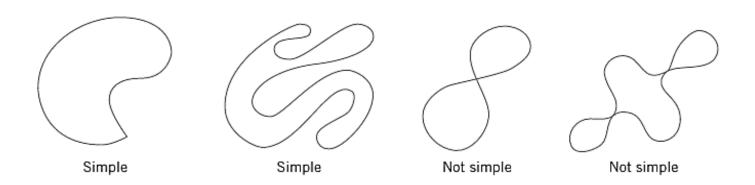
where C is the straight-line segment from 2 to 2+i.

Ex 2:

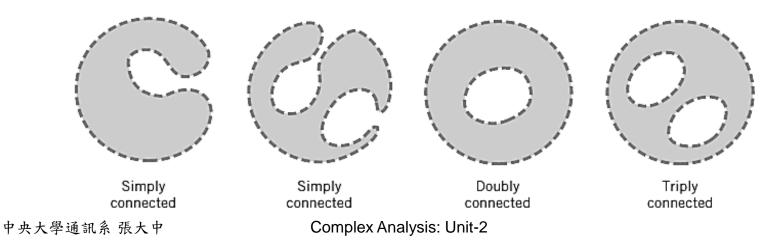
Find an upper bound for the absolute value of $\oint_C \frac{e^z}{z+1} dz$ where C is the circle |z|=4.

Topology of Paths

Simple Closed Path



 Simply Connected Domain: A simply connected domain is a path-connected domain where one can continuously shrink any simple closed curve into a point while remaining in the domain.



14

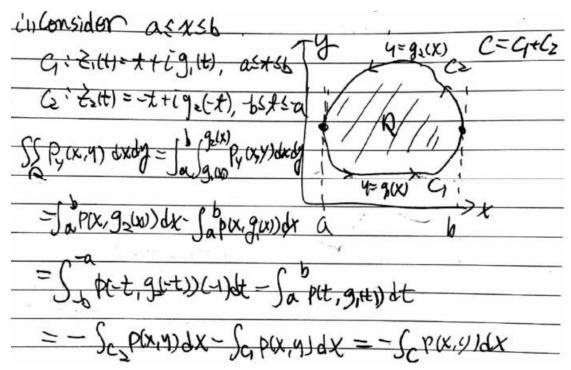
Green's Theorem

Theorem (Green's theorem):

Let C be a simple closed contour with positive orientation and let R be the domain that forms the interior of C. If P and Q are continuous and have continuous partial derivatives P_x , P_y , Q_x , and Q_y at all points on C and R, then

$$\int_C P(x, y)dx + Q(x, y)dy = \iint_R [Q_x(x, y) - P_y(x, y)]dxdy$$

Proof:



Proof of Green's Theorem

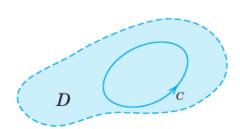
Cauchy Integral Theorem

Suppose that a function f is analytic in a simply connected domain D and that f' is continuous in D. Then for every simple closed contour C in D, $\oint_C f(z) dz = 0$.

Proof:

$$\oint_C f(z) \, dz = \oint_C u(x, y) \, dx - v(x, y) \, dy + i \oint_C v(x, y) \, dx + u(x, y) \, dy$$

With Green's theorem $\oint_C P\,dx + Q\,dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\,dA.$



$$\oint_C f(z) \ dz = \iint_R \left(\ -\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \ dA + i \iint_R \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) \ dA.$$

Because f is analytic in D, the real functions u and v satisfy the Cauchy-Riemann equations, $\partial u/\partial x = \partial v/\partial y$ and $\partial u/\partial y = -\partial v/\partial x$, at every point in D. Using the Cauchy-Riemann equations to replace $\partial u/\partial y$ and $\partial u/\partial x$ shows that

$$\begin{split} \oint_C f(z) \, dz &= \iint_R \left(-\frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \right) \, dA + i \iint_R \left(\frac{\partial v}{\partial y} - \frac{\partial v}{\partial y} \right) \, dA \\ &= \iint_R (0) \, dA + i \iint_R (0) \, dA = 0. \end{split}$$

Example 1:

Entire Functions

$$\oint_C e^z dz = 0, \qquad \oint_C \cos z dz = 0, \qquad \oint_C z^n dz = 0 \qquad (n = 0, 1, \dots)$$

for any closed path, since these functions are entire (analytic for all z).

EXAMPLE 2 Applying the Cauchy-Goursat Theorem

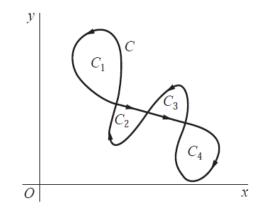
Evaluate $\oint_C \frac{dz}{z^2}$, where the contour C is the ellipse $(x-2)^2 + \frac{1}{4}(y-5)^2 = 1$.

Solution

Closed Contour with Self-intersection Points

If f is analytic at each point interior to and on C,

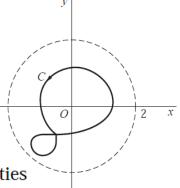
$$\int_C f(z) \, dz = \sum_{k=1}^4 \int_{C_k} f(z) \, dz = 0.$$



Example: If C denotes any closed contour lying in the open disk |z| < 2

$$\int_C \frac{z \, e^z}{(z^2 + 9)^5} \, dz = 0.$$

This is because the disk is a simply connected domain and the two singularities $z = \pm 3i$ of the integrand are exterior to the disk.



Independence of Path

Independence of Path

If f(z) is analytic in a simply connected domain D, then the integral of f(z) is independent of path in D.

Proof:

Line Integral of an Analytic Complex Function

Independence of Path.

Let f(z) be analytic in a simply connected domain D. Then there exists an indefinite integral of f(z) in the domain D, that is, an analytic function F(z) such that F'(z) = f(z) in D, and for all paths in D joining two points z_0 and z_1 in D we have

$$\int_{z_0}^{z_1} f(z) dz = F(z_1) - F(z_0) \qquad [F'(z) = f(z)].$$

(Note that we can write z_0 and z_1 instead of C, since we get the same value for all those C from z_0 to z_1 .)

Proof:

$$\int_C f(z) dz = \int_a^b f(z(t))z'(t) dt = \int_a^b F'(z(t))z'(t) dt$$

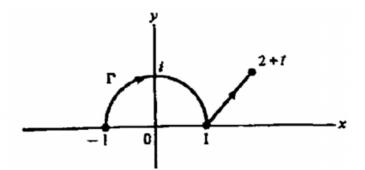
$$= \int_a^b \frac{d}{dt} F(z(t)) dt \quad \leftarrow \text{chain rule}$$

$$= F(z(t)) \Big|_a^b$$

$$= F(z(b)) - F(z(a)) = F(z_1) - F(z_0).$$

Line Integration of Analytic Functions

Example: Compute the integral $\int_{\Gamma} \cos z \ dz$.



Solution:

Contour Integration of Non-analytic Functions

Example

$$\oint_C \overline{z} \, dz = \int_0^{2\pi} e^{-it} i e^{it} \, dt = 2\pi i$$

where $C: z(t) = e^{it}$ is the unit circle. This does not contradict Cauchy's theorem because $f(z) = \overline{z}$ is not analytic.

Contour Integration of Not Simply Connected (Doubly Connected) Functions

<u>Corollary</u>: Let z_0 denote a fixed complex value. If C is a simple closed contour with positive orientation such that z_0 lies interior to C, then

$$\oint_C \frac{dz}{z-z_0} = 2\pi i \quad \text{and} \quad \oint_C \frac{dz}{(z-z_0)^m} = 0,$$

where m is any number except m = 1.

Solution.

Deformation of Contour

Theorem (Deformation of Contour):

Let C_1 and C_2 be two simple closed positively oriented contours such that C_1 lies interior to C_2 . If f is analytic in a domain D that both C_1 and C_2 are the region between them, then

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$$

Proof:

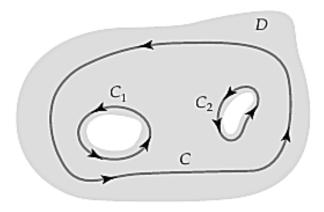
 C_2

D

Multiply Connected Domains

Suppose C, C_1, \ldots, C_n are simple closed curves with a positive orientation such that C_1, C_2, \ldots, C_n are interior to C but the regions interior to each $C_k, k = 1, 2, \ldots, n$, have no points in common. If f is analytic on each contour and at each point interior to C but exterior to all the $C_k, k = 1, 2, \ldots, n$, then

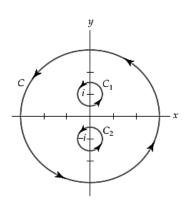
$$\oint_C f(z) dz = \sum_{k=1}^n \oint_{C_k} f(z) dz.$$



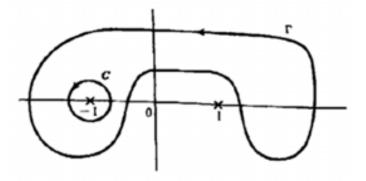
Ex 1: Evaluate $\oint_C \frac{5z+7}{z^2+2z-3}dz$, where C is circle |z-2|=2.

Sol:

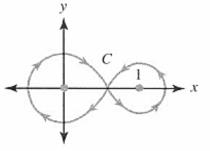
EX 2: Evaluate $\oint_C \frac{dz}{z^2+1}$, where C is the circle |z|=4.



EX 3: Evaluate $\int_{\Gamma} 1/(z^2-1)dz$, where Γ is depicted as below.



EX 4: Show that $\int_C \frac{z-2}{z^2-z} dz = -6\pi i$, where C is the "figure eight" contour



(a) The figure eight contour C.

Cauchy Integral Formula

Theorem. Let f be analytic everywhere inside and on a simple closed contour C, taken in the positive sense. If z_0 is any point interior to C, then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z) dz}{z - z_0}.$$

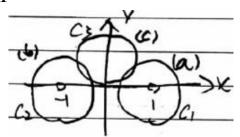
Proof:

EX 1: Evaluate
$$\oint_C \frac{z^2 - 4z + 4}{z + i} dz$$
, where C is the circle $|z| = 2$.

Solution

EX 2: Evaluate
$$\oint_C \frac{z}{z^2 + 9} dz$$
, where C is the circle $|z - 2i| = 4$. Solution

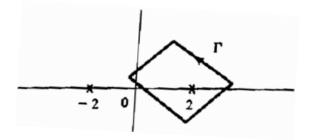
EX 3: Integrate $g(z) = \frac{z^2 + 1}{z^2 - 1}$ counterclockwise around (a), (b) and (c) contours.



Ex 4: Evaluate the integral

$$\oint_{\Gamma} \frac{\cos z}{z^2 - 4} \, dz$$

along the contour Γ .



EX 5: Compute

$$\oint_C \frac{z^2 e^z}{2z + i} dz$$

where C is the unit circle |z|=1 traversed in the clockwise direction.

Sol:

Exercise: Compute (in the counterclockwise direction)

$$\oint_C \frac{z^2 + 3z + 2i}{z^2 + 3z - 4} \, dz;$$

for (a) C: |z|=2, (b) C: |z+5|=2, and (c) |z|=5.

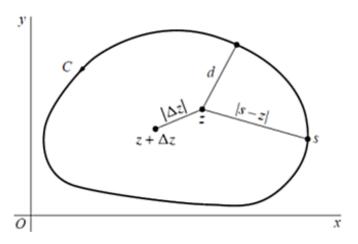
Ans: (a)
$$(8\pi i - 4\pi)/5$$
; (b) $-(8\pi i - 4\pi)/5$; (c) 0

Extension of the Cauchy Integral Formula

Verify that

$$f'(z) = \frac{1}{2\pi i} \int_C \frac{f(s) ds}{(s-z)^2}$$

where z is interior to C and where s denotes points on C.



Cauchy's Integral Formula for Derivatives

If f(z) is analytic in a domain D, then it has derivatives of all orders in D, which are then also analytic functions in D. The values of these derivatives at a point z_0 in D are given by the formulas

$$f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

$$f''(z_0) = \frac{2!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^3} dz$$

and in general

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz \qquad (n = 1, 2, \dots);$$

here C is any simple closed path in D that encloses z_0 and whose full interior belongs to D; and we integrate counterclockwise around C

EX 1: Contour C encloses πi in counterclockwise sense,

$$\oint_C \frac{\cos z}{(z - \pi i)^2} dz =$$

EX2: Contour C encloses -i in counterclockwise sense,

$$\oint_C \frac{z^4 - 3z^2 + 6}{(z+i)^3} \, dz =$$

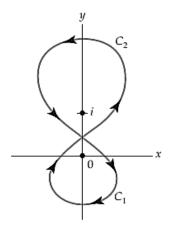
EX3: Contour C encloses 1 and $\pm 2i$ lies outside in counterclockwise sense,

$$\oint_C \frac{e^z}{(z-1)^2(z^2+4)} \, dz =$$

EX 4: Evaluate $\oint_C \frac{z+1}{z^4+2iz^3} dz$, where C is the circle |z|=1.

Solution

EX 5: Evaluate $\int_C \frac{z^3+3}{z(z-i)^2} \, dz$, where C is the figure-eight contour **Sol:**



Cauchy's Inequality

Suppose that f is analytic in a simply connected domain D and C is a circle defined by $|z - z_0| = r$ that lies entirely in D. If $|f(z)| \leq M$ for all points z on C, then

$$\left| f^{(n)}(z_0) \right| \le \frac{n!M}{r^n}.$$

Proof: