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Contour

Suppose a curve C' in the plane is parametrized by a set
of equations » = x(t), y = y(t), a < t < b, where z(t) and y(t) are continuous
real functions. Let the initial and terminal points of C, that is, (z(a), y(a))
and (z(b), y(b)), be denoted by the symbols A and B, respectively. We say
that:

(i) C'is a smooth curve if 2" andy’ are continuous on the closed interval
[a, b] and not simultaneously zero on the open interval (a, b).

(22) C' is a piecewise smooth curve if it consists of a finite number of

smooth curves C, Cs, . . ., C), joined end to end, that is, the terminal
point of one curve C} coinciding with the initial point of the next curve
C;,;_|_1.

(iiz) C' is a simple curve if the curve C does not cross itself except possibly
at t =a and t = b.

(iv) C'is a closed curve if A = B.

(v) C is a simple closed curve if the curve C' does not cross itself and

A = B; that is, C is simple and closed.c

zib)
zla) A=B

(d) Simple closed

Curve ' is not smooth curve
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{a) Smooth
curve and
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(b) Piecewise smooth
curve and simple

A=B

{c) Closed but
not simple
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Contour
* In complex analysis, a piecewise smooth curve C is called a contour or path.
« We define the positive direction on a contour C to be the direction on the curve

corresponding to increasing values of the parameter t. It is also said that the
curve C has positive orientation (counterclockwise direction).

Positive direction

« The negative direction on a contour C is the direction opposite the positive
direction. If C has an opposite orientation, it is denoted by —C. On a simple
closed curve, the negative direction corresponds to the clockwise direction.
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Integral of Complex Function Along a Contour

Definition

Suppose that the equation z = z(t) (a <t <b) represents a contour C, extending from
a point z, = z(a) to a point z, = z(b). We assume that f[z(t)] is piecewise continuous on
the interval a <t <b and refer to the function f(z) as being piecewise continuous on C.
We then define the line integral, or contour integral, of f along C in terms of the

parameter t: ’

b c
f,}"t:r)d:.:f flz(n]Z' (1) dt. Z
C i, -C

Note that the integral along —C, =

7 =2z(—1) (=b <t <-—a) 0

—a a‘ —a
f f(z)dz :f flz(=t)] —z(—t)dt = —[ flz(=D) 7' (=1) dt
—C b dt b

where 7'(—t) denotes the derivative of z(f) with respect to t, evaluated at —t.
Making the substitution T = —¢ in this last integral , we obtain the expression

b
f f(2)dz = —f flz(t))Z'(t)dt, this means that / 7)dz = f f(z)dz.
—-C a —C
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Contour Integral

Suppose that f(z) = w(z) + iv(z) and that z(t) = x () + iy (f) is a
parametrization for the contour €. Then

ff ) dz fhr 0) 2 (t) dt

_ / (2 () + v (2 (£)] [ (&) + iy’ &) dt

I
- [ G - vy Ol
oM
+:] o (= () " (£) + (= (&) y’ (1)) di

b
= [ (ux' — vy ) dt +1i / (va" + uy ") dt,
S

(L

/ flz)dz = / udr — v dy + i] vodr 4w dy
.’ SO <
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Properties of Contour Integral

Suppose the functions f and g are continuous in a domain ), and (' is a
smooth curve lying entirely in D). Then

(1) [okf(z)dz=Fk][, f(z)dz, k a complex constant.

(i) [olF(2) + g(2))dz = [ f(2) dz+ [ 0(2) de.
(11i) [o f(z)dz = [, f(2)dz + [, f(z)dz, where C consists of the

smooth curves €1 and €5 joined end to end.

(i) [_f(z)dz = — [, f(2)dz, where -C denotes the curve having the

opposite orientation of C'.
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Line Integral of a General Complex Function

Dependence on path.

If we integrate a given function f(z) from a point zo to a point z1 along different paths,
the integrals will in general have different values. In other words, a complex line
integral depends not only on the endpoints of the path but in general also on the
path itself.

Let C be a piecewise smooth path, represented by z = z(t), where a =t = b. Let
f(z) be a continuous function on C. Then

b -
jﬂ*ﬂ dz = J flz(n)]z(r) di ( = d!).

C (1

Steps in Calculation:

(A) Represent the path C in the form z(7) (a = 1 = b).

(B) Calculate the derivative z(1) = dz/dk.

(C) Substitute z(r) for every z in f(z) (hence x(r) for x and y(r) for y).
(D) Integrate f[z(1)]z(1) over ¢ from a to b.
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Ex 1:

Evaluate (a) [ xzydz, (b) [, zy’dy, and (c) [ xzy*ds, where the path of inte-
gration C' is the quarter circle defined by =z = 4cost, y = 4sint,
0<t<mw/2

Solution
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Ex 2: Integrate f(z) = Rez = x from 0 to 1 + 2i (a) along C*, (b) along € consisting of € and Cs.

Solution.

¥
2 pr=1+2(
/
/
/
IC.“"Jr
7 e
J [ L
/
,.rf
/G
1 x
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Ex 3: Evaluate §. y? dx — x%dy , where C' is the closed curve

Solution:
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¥
1 C,
y=x
A C,
B X
Cl
C=C +C,+C,
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ML Inequality

If f is continuous on a smooth curve C and if |f(z)| < M for all z on C,

then Ur_" f(z) dz{ < ML, where L is the length of C.

Proof:

The complex integral of f on C'is

/C fle)de = B 3 f(ei) B

It follows from the form of the triangle inequality

mn Tt
LS 1R Az < MY Az,
k=1 k=1
c

atw| &’
dz -
erxéﬂ = Mty E=L

Because |Azi| = \/[ﬂ.mk) + (Ayg)?, we can interpret |Azi| as the length
of the chord joining the points z; and zx_; on C. Moreover, since the sum
of the lengths of the chords cannot be greater than the length L of C, the
inequality (14) continues as |3 ;_; f(z})Azg| < ML. Finally, the continuity
of f guarantees that [, f(z)dz exists, and so if we let ||P|| — 0, the last

inequality vields | Jo f(z)d= | < ML. LN
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Ex 1:
1

1
/ = dz
241

<

Sl

2y

where €' is the straight-line segment from 2 to 2 4 @

Sol:
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Ex 2:

Find an upper bound for the absolute value of

Z

Jo z+

circle = 4.

Sol:

=
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Topology of Paths

« Simple Closed Path

S YN

Simple Simple Mot simple Mot simple

« Simply Connected Domain: A simply connected domain is a path-connected
domain where one can continuously shrink any simple closed curve into a point
while remaining in the domain.

-
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Green’s Theorem

Theorem (Green’s theorem):

Let C be a simple closed contour with positive orientation and let R be the domain
that forms the interior of C. If P and Q are continuous and have continuous partial
derivatives P, P,, Q,, and Q, at all points on C and R, then

[_ PO y)dx+Q(x, y)dy = [[[Q,(x, y) — P, (x, y)ldxdy

Proof: ' lemside I Z4N | i '
- ST waw  CSGeG

. \ | ’ S8 /( Ce
L A 1

G 8 = R, S V747N
\_r\ (x) l///@////"
AT = Y A sl s
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= mPDc,jQ(nJ)dk}fabgmg‘w)&r 6

Y b
:( d)l‘»""Q‘ - .\lJ—
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= — ~ \ by aldy == vx.9ldx
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Proof of Green’s Theorem
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Cauchy Integral Theorem

Suppose that a function [ is analytic in a simply connected domain
D and that f' is cﬂntiﬂuﬂus in . Then for every simple closed

contour C in D, §c z)dz = (.

Proof:

?{ flz)dz = ?{ w(x,y)dr —v(z,y)dy + i ?{ v(z,y)dr + u(z,y) dy _emTTT
Jo Jo Jo

2Q oP
With Green’s theorem f}g Pdr + Qdy —[[ —— 37 )dA 7 p Q
Jo JJr \ Ox Ay -

forie [ (-t e f (-2

Because f is analytic in D, the real functions uw and v satisfy the Cauchy-
Riemann equations, du/dx = dv/dy and du/dy = —dv/dx, at every point in

D. Using the Cauchy-Riemann equations to replace du/dy and du/dx shows that

943"{ )ti*f—[é( g; 3—*) rfA+;[L(——g—:) dA
. / (0) dA + i / (0) dA = 0.
S J R J IR
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Example 1:

Entire Functions

!F e~ dz = 0, EF? cos zdz = 0, C} tdz =10 in=0,1,--)
' c

SO JC

for any closed path, since these functions are entire (analytic tor all z).

EXANPLE 2 Applying the Cauchy-Goursat Theorem

dz
Evaluate jg —, where the contour C' is the ellipse (z — 2)% + %l[y —5)% =1.

::,“32:

Solution

LI S TR W S Complex Analysis: Unit-2
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Closed Contour with Self-intersection Points

« If fis analytic at each point interiortoandon C,  »

4
f(2)dz = f(z)dz = 0.

Example: If C denotes any closed contour lying in the open disk |z] < 2

- / C(
:tj-l\. !
f — (f:,.' = D ’f
C

(22 +9)° E 0

This is because the disk is a simply connected domain and the two singularities -

z = *x3i of the integrand are exterior to the disk.

LRI £ U= I Complex Analysis: Unit-2
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Independence of Path

Independence of Path
If f(z) is analytic in a simply connected domain D, then the integral of f(z2) is

independent of path in D.

Proof:

LR & LA R Complex Analysis: Unit-2
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Line Integral of an Analytic Complex Function

Independence of Path.

Let f(z) be analvtic in a simply connected domain D. Then there exists an indefinite
integral of f(z) in the domain D, that is, an analytic function F(z) such that
F'(z) = f(z) in D, and for all paths in D joining two points zo and z1 in D we have

J f(2)dz = F(z1) — F(zo) [F(2) = f(2)].

In

(Note that we can write 7o and zq instead of C, since we gel the same value for all
those C from zg to 21.)

Proof:

b b
z)dz = N2 () dt = T(z()) 2 (t) dt
_/{__ﬂ )¢ /ﬂ f(2(t))2'(t) dt [ F'(2(t))2'(t) dt

)

b
1
a /.1 %F{::’[”} dt +— chain rule

= F(z(t) |,
= F(z(b)) — F(2(a)) = F(z1) — F(z0).
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Line Integration of Analytic Functions

Example: Compute the integral L cosz dz.

y

i 2+t

v ,

Solution:
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Contour Integration of Non-analytic Functions

Example
Far ) )
c]E Tdz = J e Mgt dr = 297i
_C ﬂ

where C: z(r) = ¢! is the unit circle. This does not contradict Cauchy’s theorem because f(z) = T is not
analytic. |
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Contour Integration of Not Simply Connected (Doubly Connected) Functions

Corollary: Let z, denote a fixed complex value. If C is a simple closed contour with positive

orientation such that z, lies interior to C, then

f dz - 4 f dz 0
= 4Tl an —_— =\,
c £~ Zy c (Z - Zﬂ.)m

where m is any number except m = 1.

Solution.
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Deformation of Contour

Theorem (Deformation of Contour):

Let C, and C, be two simple closed positively oriented contours such that C, lies

interior to C,. If f is analytic in a domain D that both C, and C, are the region
between them, then

.v
A

[ f@dz=|_ f(2)dz

{ C, N D \

Proof:
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Multiply Connected Domains

Suppose C', C'1, ..., ()}, are simple closed curves with a positive orientation
such that ¢, C5, ..., (U, are interior to C' but the regions interior to each
Ch, k=1,2,..., n, have no points in common. If f is analyvtic on each
contour and at each point interior to C' but exterior to all the C., &k = 1, 2,
..., n, then

9{ f(z)dz=) ¢ f(z)dz.
JC 1 Cr

LR & LA R Complex Analysis: Unit-2
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dz, where C' is circle |z — 2| = 2.

hz 4+ T
Ex 1: Evaluate )g 5
Jo 22 +¥2:-3

Sol:

, where (' is the circle |z| = 4. y

) iz
EX 2: Evaluate sg

_{'132-}-1

Sol:
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EX 3: Evaluate f 1/(z? —1)dz, where T is depicted as below.
r

Sol:

LRI £ U= I Complex Analysis: Unit-2
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EX 4: Show that f{ H%__—E; dz = —6mwi, where €' is the “figure eight” contour

Sol:

T EE VR T

¥

T, C _
fﬁf N/ £y
23— 4 YA N
\. A" /
o l ____-l"ﬁ' I\-\\"'\--_:—"‘;'cl‘

{a) The figure eight contour C,

Complex Analysis: Unit-2
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Cauchy Integral Formula

Theorem. Let [ be analyvtic everywhere inside and on a simple closed contour
C, taken in the positive sense. If zg is any point interior to C, then

1 f(z) dz
2ri Jo z—z0

f(zo) =

Proof:
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EX 1: Evaluate ?g

Solution

EX 2: Evaluate ?g

JCO

Solution

R SN

22 4z 44

C

w dz, where C' is the circle |z| = 2.
z+1i

=

——— dz, where C'is the circle |z — 2i| = 4.
z< 4+ 9

Complex Analysis: Unit-2
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EX 3: Integrate g(z) =

Sol:

AT VR SN

z°+1

2

Z2

counterclockwise around (a), (b) and (c) contours.

AV4
r

Complex Analysis: Unit-2

32



Ex 4. Evaluate the integral
COSz
@ —dz
rze—-4
along the contour I".

S AR

Complex Analysis: Unit-2

33



EX 5: Compute

2.2
5-[3 ze-dz
C2Z+I1

where C is the unit circle |z|=1 traversed in the clockwise direction.

Sol:

Exercise: Compute (in the counterclockwise direction)

2

"2+ 3242
% - - - : dz:
o A {_. = .1

for (a) C: |z]|=2, (b) C: |z+5]|=2, and (c) |z]=5.

Ans: (a) (8mi — 4m)/5; (b) —(8mi — 4m)/5; (c)0

TN & Ul I Complex Analysis: Unit-2

34



Extension of the Cauchy Integral Formula

Verify that
1 f(s)ds

27 c (s —:}2

f'(2)

where z is interior to C and where s denotes points on C.
Sol: ¥

LI S TR W S Complex Analysis: Unit-2
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Cauchy’s Integral Formula for Derivatives

If f(z) is analytic in a domain D, then it has derivatives of all orders in D, which
are then also analytic functions in D. The values of these derivatives at a point Z

in D are given by the formulas

/'(zo) = jg
L l:

y ird

(2)
0,
f(2)

fM(zo) = jg
e 2

and in general

£,

f(2) (n=1.2-)

_f{ﬂ}(z }

n'%
2 c

(z — z

)'ﬂ.+1

here C is any simple closed path in D that encloses z g and whose full interior belongs
to D; and we integrate counterclockwise around C

T EE VR T

Complex Analysis: Unit-2
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EX 1: Contour C encloses 71 in counterclockwise sense,

EX3: Contour C encloses 1 and +2j lies outside in counterclockwise sense,

.'_.J
- - dz
i (z — D% + 4)

TN & Ul I Complex Analysis: Unit-2
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EX 4: Evaluate jg

JO

Solution

T EE VR T

z+1

z% 4+ 252

5 dz, where C' is the circle

Complex Analysis: Unit-2

=

= 1.
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EX 5: E;valuai.c/
Sol: '

T EE VR T

Fa z{}: — 1

2343

]2

dz, where (' is the figure-eight contour

Complex Analysis: Unit-2
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Cauchy’s Inequality

Suppose that f is analytic in a simply connected domain D and C' is a
circle defined by |z — zg| = r that lies entirely in D. If |f(z)| < M for all
points z on ', then

‘f{m[ﬂn}‘ < ﬂ..!ﬂi'.

r

Proof:

LR & LA R Complex Analysis: Unit-2
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