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Contour
NSRBI Suppose a curve C' in the plane is parametrized by a set B

of equations = = z(), y = y(t), a <t < b, where z(t) and y(f) are continuous
real functions. Let the initial and terminal points of C| that is, (z(a), y(a))
and (z(b), y(b)), be denoted by the symbols A and B, respectively. We say

A
that:
(i) C is a smooth curve if 2’ andy’ are contimious on the closed interval @ fﬂﬁgﬁ,‘;d
[a, b] and not simultaneously zero on the open interval (a, b). simple

(12) C is a piecewise smooth curve if it consists of a finite number of

smooth curves C'f, Cy, . . . , C, joined end to end, that is, the terminal
point of one curve C} coinciding with the initial point of the next curve
Ck—l—l .

(#22) C is a simple curve if the curve C' does not cross itself except possibly
_ dt=»b (b) Piecewise smooth
att =aand t = 0. curve and simple

(iw) C is a closed curve if A = B. A=B

(v) C is a simple closed curve if the curve €' does not cross itself and
A = B:; that is, C' is simple and closed.

C
,__\/—;w)
z(a) A=B
(¢) Closed but

(d) Simple closed not simple

curve
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Curve €' is not smooth




Contour
* In complex analysis, a piecewise smooth curve C is called a contour or path.
*  We define the positive direction on a contour C to be the direction on the curve

corresponding to increasing values of the parameter +. It is also said that the
curve C has positive orientation (counterclockwise direction).

Positive direction

* The negative direction on a contour C is the direction opposite the positive
direction. If C has an opposite orientation, it is denoted by —C. On a simple
closed curve, the negative direction corresponds to the clockwise direction.
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Integral of Complex Function Along a Contour

Definition

Suppose that the equation z = z(¢) (a <t < b) represents a contour C, extending from
a point z, = z(a) to a point z, = z(b). We assume that f[z()] is piecewise continuous on
the interval a <t < b and refer to the function f{z) as being piecewise continuous on C.
We then define the line integral, or contour integral, of f along C in terms of the

parameter ¢ : .

b c
f‘f'(:)d::f flz(O1Z (1) dt. 3
c a _C

Note that the integral along —C, 4

(R

z=2z(-1) (=b<t<-a) .

ff ydz = _af[(—r)]— (—=t)dt = — f flz(=0)] 7' (=) dt

where z'(—t) denotes the derivative of z(f) with respect to t, evaluated at —f.
Making the substitution T = —7 in this last integral , we obtain the expression

[ f(2)dz =— fj[(r 7)dT, thlsmeansthatf f(z)dz = — ff(;’,}d;’,.
C
4
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Contour Integral

Suppose that f(z) = wu(z) -+ iv(z) and that z(t) = x(t) + iy (f) is a
parametrization for the contour €. Then

b
Jrea— [ reo o
b
—./ =z () + v (= (E)] [z (F) + iy’ ()] di
b
— [ @)’ ® -0 @)y @)
o ol
+«:‘./ [o(z(£))a’ (&) +u(z () y’ (t)] di

b t
= / (ux’ — vy’ dt +i / (v’ + uy ") dt,

21

/ f(z)dz = [ udr — v dy + i/ vdr 4+ u dy
! SO L

PR KRG

g
(a4
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Properties of Contour Integral

Suppose the functions f and g are continuous in a domain I, and C is a
smooth curve lying entirely in [). Then

(i) [okf(z)dz = k][, f(2)dz, k a complex constant.

(i) [o [f(2) +9(z)ldz = [ f(z) dz + [ 9(z) d=.
(1ii) [o f(z)dz = [, f(z)dz + [, f(z)dz, where C consists of the

smooth curves 'y and Cs joined end to end.

(iv) [_o f(2)dz = — [, f(2) dz, where —~C denotes the curve having the

opposite orientation of C.
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Line Integral of a General Complex Function

Dependence on path.

If we integrate a given function f{z) from a point zo to a point z1 along different paths,
the integrals will in general have different values. In other words, a complex line
integral depends not only on the endpoints of the path but in general also on the
path itself.

Let C be a piecewise smooth path, represented by z = z(1), where a =1 = b. Let
[f(z) be a continuous function on C. Then

b 4
Jf[z) dz = Jf[z{f)]:".{f) dt (4 = )

C )

Steps in Calculation:
(A) Represent the path C in the form z(t) (a = 1 = b).
(B) Calculate the derivative z(1) = dz/d.
(C) Substitute z(r) for every z in f(z) (hence x(r) for x and y(r) for y).
(D) Integrate f{:(n]:'.(r} over ! from a to b.
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Ex 1:

Evaluate (a) [, zy*dz, (b) [, zy*dy, and (c) [, xyds, where the path of inte-
gration C' is the quarter circle defined by =z = 4dcosi, y = 4sint,
0<t<m/2.

Solution
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Ex 2: Integrate fiz) = Rez = x from 0 to 1 + 2i (a) along C*, (b) along C consisting of Cy and Cs.

Solution.
¥
2 pz=1+2
J{.l’
S
cry
ra
II CZ
f
£
f; C\‘l
1 x
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Ex 3: Evaluate ¢, y? dx — xdy , where ' is the closed curve y

Solution:
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ML Inequality

If f is continuous on a smooth curve C and if |f(z)| < M for all z on C,

then UC f(z) dz{ < ML, where L is the length of C'.

Proof:

The complex integral of f on C is

f(z d,z:] flzp) Az
/L() 1111 Z zn ) Azg.

It follows from the form of the triangle inequality

()| < D) 1Aze] < MY | Az
k=1 k=1
2
: &
ECR

G ladh < A lngth 7 & = L
Because |Azg| = \X(Aﬁ:‘k)g + (Ayk)g, we can interpret |Azi| as the length

of the chord joining the points z; and zx_; on . Moreover, since the sum
of the lengths of the chords cannot be greater than the length L of C, the
inequality (14) continues as |3 r_; f(z5)Azk| < ML. Finally, the continuity
of f guarantees that [ f(z)dz exists, and so if we let ||[P| — 0, the last
inequality yields | Jo f(z)d= ‘ <ML.
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Ex 1:
/' 1 1
S dz| < =,
o e +1 2\‘,/:
where C' is the straight-line segment from 2 to 2 + ¢.
Sol:
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Ex 2:

z

Find an upper bound for the absolute value of jg j_ dz where ' is the
oz

circle |z| = 4.

Sol:
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Topology of Paths
+ Simple Closed Path

D e b a
¢ (&2 (5

Simple Simple Mot simple Mot simple

Simply Connected Domain: A simply connected domain is a path-connected

domain where one can continuously shrink any simple closed curve into a point
while remaining in the domain.

o
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Simply Simply Doubly Triply
connected connected connected connected
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Green’s Theorem

Theorem (Green’s theorem):

Let C be a simple closed contour with positive orientation and let R be the domain
that forms the interior of C. If P and Q are continuous and have continuous partial
derivatives P,, P, Q_,and Q, at all points on C and R, then

[ PG, y)dx+ O, »)dy = [0, (x, ») = P, (x, y)]dxdy

Proof:  lemside™ peqsh

A2 (i o
(G7 IS Sy A o o 2 T 2 s /K (62
GG ST 9.0, V777 \
_ xfiw?”"”‘ \ /Y /)

A’ ‘ e Jag'! -~\\>/——->w/:

\: v" L'l' 'F‘WO q-.‘\‘
= ,,,PDc,jQw)&kja"gmg‘w)&r 6

= :
= H

R w~ — Vi
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Proof of Green’s Theorem

.) (gesil ey nggd ' o 4 CERtey
\,Lu-)\h(-t) T L P ’

. /747 Y=

Jc 8 (hath), )t i&_(h,(-{), 1) (- Di_’b\
= feq Bl L 00EMNIY = (0 suxidly-
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Cauchy Integral Theorem

Suppose that a function [ is analylic in a simply connected domain
D and that f' is continuous in D. Then for every simple closed

contour C'in D, §. f(z)dz =0

Proof:

?g flz)dz = ?{ w(z,y)de —v(z,y)dy +1i ?{ vz, y)de + u(z,y) dy =TT
Je Je Jeo

0Q P
With Green’s theorem 51( Pdzx+ Qdy —// (a— - —) dA. O >
Je JIp\ Oz Oy ‘

A"
~

j{__'f(zjffz—-[/f;(—gi—@) ¢£A+e// (3:‘ d;) dA.

Because f is analytic in D, the real functions u and v satisfy the Cauchy-
Riemann equations, du/dx = dv /0y and du/dy = —dv/dx, at every point in

D. Using the Cauchy-Riemann equations to replace du/dy and du/dx shows that

#f{)rsy_[[{( a’} r");A+;[L( g_;)m
—.[-H (0) r1A+f._[_L (0) dA = 0,
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Example 1:
Entire Functions
jge"dz=f}._ E’;umzf.’:_=l], %:“dz=ﬂ m=01,-)
c Je c
for any closed path, since these functions are entire (analytic for all z).
EXAMPLE 2 Applying the Cauchy-Goursat Theorem
dz
Evaluate )g —» where the contour €' is the ellipse (z — 2)2 + }L(y —5)? =1.
Jo 2
Solution
P AZEMA TRAF Complex Analysis: Unit-2 18




Closed Contour with Self-intersection Points

« If fis analytic at each point interior to and on C, ¥
4
f(z)dz = f(2)dz=0
o X
Example: If C denotes any closed contour lying in the open disk |z] < 2 -

dz = 0. i
(z2 +9)° \ %O

This is because the disk is a simply connected domain and the two singularities ~~-{
7z = £3i of the integrand are exterior to the disk.

7 [// C, *\
f le 0 f \»I
C /
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Independence of Path

Independence of Path

If f(z) is analvtic in a simply connected domain D, then the integral of f(z) is
independent of path in D.

Proof:
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Line Integral of an Analytic Complex Function

Independence of Path.

Let f(z) be analytic in a simply connected domain D. Then there exists an indefinite
integral of f(z) in the domain D, that is, an analytic function F(z) such that
F'(z) = f(z) in D, and for all paths in D joining two points zo and z1 in D we have

J f(2) dz = F(z1) — F(zo) [F(z) = f(2)].

<0

(Note that we can write 2y and zq instead of C, since we get the same value for all
those C from zg to 21.)

Proof:
b b
/ flz)dz= | flz(t)2'(t)dt = [ F'(z(t)2' () dt
SO Ja Ja
b
= E—EF['(!)) dt  + chain rule
J. (_f{ SN i 1AlTl 't
= F(=(1) |
= F(2(b)) - F(2(a)) = F(21) — F(z0).
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Line Integration of Analytic Functions
Example: Compute the integral L cosz dz.
¥y
241
Pf—v
. 2 x
-1 O 1
Solution:
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Contour Integration of Non-analytic Functions

Example
2T ) )
ﬂjg zdz = ' e i dt = 2ari
c ‘0
where C: z(n = e is the unit circle. This does not contradict Cauchy’s theorem because f(z) = T is not
analytic. Ll
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Contour Integration of Not Simply Connected (Doubly Connected) Functions

Corollary: Let z, denote a fixed complex value. If C is a simple closed contour with positive

orientation such that z, lies interior to C, then

5£ dz - 4 jg dz 0
= 2mi an —_— =0,
c Z— 2y c (z—z¢)™

where m is any number except m = 1.

Solution.
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Deformation of Contour

Theorem (Deformation of Contour):

Let C, and C, be two simple closed positively oriented contours such that C, lies
interiorto C,. If /" is analytic in a domain D that both C| and C, are the region

between them, then

."
4

jcl f(2)dz = jcz f(2)d=

C N D v‘g

Proof: 7
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Multiply Connected Domains
Suppose C', C1, ..., (5, are simple closed curves with a positive orientation
such that 'y, (5, ..., (', are interior to €' but the regions interior to each
Cr, k=1,2,..., n, have no points in common. If f is analytic on each
contour and at each point interior to C' but exterior to all the Cy, k = 1, 2,
.., ., then
s

c){ f(z)dz = E flz)dz.

Jo 1 ¥ O
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hz+ 7
Ex 1: Evaluate }g

——————dz, where (' is circle |z — 2| = 2.
Jo 22 +22-3 | |

Sol:

dz
EX 2: Evaluate }g ———, where C is the circle |z| = 4. v
Jo z#+1
Sol:
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EX 3: Evaluate J' 1/(z* —1)dz, where T is depicted as below.
r

Sol:
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EX 4: Show that j(, -f-_F_-zL—_ dz = —06mi, where €' is the “figure eight” contour

Sol: y

(a) The figure eight contour €.

P REEMA RRT Complex Analysis: Unit-2
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Cauchy Integral Formula

Theorem. Let | be analytic everywhere inside and on a simple closed contour

C, taken in the positive sense. If zg is any point interior fo C, then

1 (z) d
f(z0) = > f /@ ‘)
i Jo z

— 20

Proof:

P K PEMA RAT Complex Analysis: Unit-2
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22 4z 44

EX 1: Evaluate }g dz, where (' is the circle |z| = 2.
Je z4+1
Solution
EX 2: Evaluate )g ——— dz, where C is the circle |z — 2i| = 4.
Jo ==+ 9
Solution
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z2 +1

2
z -

EX 3: Integrate g(z) = counterclockwise around (a), (b) and (c) contours.

Sol:
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Ex 4: Evaluate the integral
COoS z r
? dz
T

2
z"—4 =

along the contour T". -2 0/\3/

P REEMA RRT Complex Analysis: Unit-2

33

EX 5: Compute
2 z
e
? Z° &
C2z+1
where C is the unit circle |zj=1 traversed in the clockwise direction.
Sol:

Exercise: Compute (in the counterclockwise direction)

» 2, 9,4 9
it

for (a) C: |z|=2, (b) C: |z+5]|=2, and (c) |z|=5.

Ans: (a) (8mi —4m)/5; (b) —(8mi —4m)/5; (c)0

P REEMA RRT Complex Analysis: Unit-2
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Extension of the Cauchy Integral Formula

v 1 f(s)ds
Fe =5 fc (s —2)?

where z is interior to C and where s denotes points on C.
Sol: b

Verify that
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Cauchy’s Integral Formula for Derivatives

If f(z) is analyitic in a domain D, then it has derivatives of all orders in D, which
are then also analytic functions in D. The values of these derivatives at a point Zy
in I are given by the formulas

. @
f [x-(l') - i i} (z — 2 dz

i Z0)

" - 2! f@

._Zo)

and in general

! f(2)
F™(z0) = ”“i% { — n=1.2---)
'

27 zZ— Zo)

here C is any simple closed path in D that encloses z g and whose full interior belongs
to D; and we integrate counterclockwise around C
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EX 1: Contour C encloses i in counterclockwise sense,

‘1"; Cos !
——=dz =
o z = mi)?

EX2: Contour C encloses —; in counterclockwise sense,

EX3: Contour C encloses 1 and +2; lies outside in counterclockwise sense,
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. z4+1 . .
EX 4: Evaluate }5 ——— dz, where C is the circle |z] = 1.
Jo 2+ 2iz3

Solution
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EX 5: Evaluate / ”7)

Sol:

PR RPEEMA RRF

dz, where (' is the figure-eight contour Y
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Cauchy’s Inequality

Suppose that f is analytic in a simply connected domain 1) and C' is a

circle defined by |z — zj
points z on €', then

Proof:

P RPEEMA RRF

= r that lies entirely in D. If |f(z)| < M for all

nlM

?\-TL

FARICH] =
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