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Contour

• In complex analysis, a piecewise smooth curve C is called a contour or path.

• We define the positive direction on a contour C to be the direction on the curve 
corresponding to increasing values of the parameter t. It is also said that the 
curve C has positive orientation (counterclockwise direction).

• The negative direction on a contour C is the direction opposite the positive  
direction. If C has an opposite orientation, it is denoted by −C. On a simple 
closed curve, the negative direction corresponds to the clockwise direction.
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Integral of Complex Function Along a Contour

Definition
Suppose that the equation z = z(t) (a ≤ t ≤ b) represents a contour C, extending from 
a point z1 = z(a) to a point z2 = z(b). We assume that f[z(t)] is piecewise continuous on 
the interval a ≤ t ≤ b and refer to the function f(z) as being piecewise continuous on C. 
We then define the line integral, or contour integral, of f along C in terms of the 
parameter t :

Note that the integral along –C, 
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Contour Integral
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Properties of Contour Integral
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Line Integral of a General Complex Function

Dependence on path. 

If we integrate a given function f(z) from a point z0 to a point z1 along different paths, 
the integrals will in general have different values. In other words, a complex line 
integral depends not only on the endpoints of the path but in general also on the 
path itself.

Steps in Calculation:
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Ex 1:

Solution 
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Ex 2:
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Ex 3:

Solution:

10Complex Analysis: Unit-2

1
C

2
C

3
C

1 2 3
C C C C� � �



ML Inequality

Proof:
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Ex 1: 

Sol:
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Ex 2:

Sol:
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Topology of Paths

• Simple Closed Path

• Simply Connected Domain: A simply connected domain is a path-connected 
domain where one can continuously shrink any simple closed curve into a point 
while remaining in the domain.
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Green’s Theorem

Theorem (Green’s theorem):
Let C be a simple closed contour with positive orientation and let R be the domain 
that forms the interior of C. If P and Q are continuous and have continuous partial 
derivatives     ,     ,     , and      at all points on C and R, then       

Proof:
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Proof of Green’s Theorem
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Cauchy Integral Theorem

Proof:
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With Green’s theorem

Example 1:

18Complex Analysis: Unit-2



Closed Contour with Self-intersection Points

• If f is analytic at each point interior to and on C,

Example: 
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Independence of Path

Proof:
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Line Integral of an Analytic Complex Function

Independence of Path.

Proof:
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Line Integration of Analytic Functions

Example: Compute the integral                 . 

Solution:
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Contour Integration of Non-analytic Functions

Example
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Contour Integration of Not Simply Connected (Doubly Connected) Functions

Proof:
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Deformation of Contour

Theorem (Deformation of Contour):
Let       and       be two  simple closed positively oriented contours such that       lies 
interior to      . If  f  is  analytic in a domain D that both      and       are the region 
between them, then       

Proof:
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Multiply Connected Domains
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Ex 1: 

Sol:

EX 2: 

Sol:
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EX 3: Evaluate                     , where is depicted as below.

Sol:
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EX 4:

Sol:
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Cauchy Integral Formula

Proof:
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EX 1:

EX 2: 
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EX 3: Integrate                       counterclockwise around (a), (b) and (c) contours.

Sol:
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Ex 4: Evaluate the integral

along the contour    .
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EX 5: Compute

where C is the unit circle |z|=1 traversed in the clockwise direction. 
Sol:

Exercise: Compute (in the counterclockwise direction)
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Extension of the Cauchy Integral Formula

Verify that 

where z is interior to C and where s denotes points on C.
Sol: 
We let d denote the smallest distance from z to points s on C.
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Cauchy’s Integral Formula for Derivatives
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EX 1: Contour C encloses      in counterclockwise sense, 

EX2: Contour C encloses       in counterclockwise sense, 

EX3: Contour C encloses 1 and        lies outside in counterclockwise sense, 
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EX 4:
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EX 5:
Sol:
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Cauchy’s Inequality

Proof:
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