Unit-2 Complex Integration

張大中 中央大學 通訊工程系 dcchang@ce.ncu.edu.tw

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 1

Contour

Terminology Suppose a curve C in the plane is parametrized by a set of equations $x = x(t)$, $y = y(t)$, $a \le t \le b$, where $x(t)$ and $y(t)$ are continuous real functions. Let the initial and terminal points of C, that is, $(x(a), y(a))$ and $(x(b), y(b))$, be denoted by the symbols A and B, respectively. We say that:

- (i) C is a smooth curve if x' and y' are continuous on the closed interval [a, b] and not simultaneously zero on the open interval (a, b) .
- (*ii*) C is a piecewise smooth curve if it consists of a finite number of smooth curves C_1, C_2, \ldots, C_n joined end to end, that is, the terminal point of one curve C_k coinciding with the initial point of the next curve C_{k+1} .
- (*iii*) C is a simple curve if the curve C does not cross itself except possibly at $t = a$ and $t = b$.
- (*iv*) C is a closed curve if $A = B$.
- (v) C is a simple closed curve if the curve C does not cross itself and $A = B$; that is, C is simple and closed.

(d) Simple closed curve

 B A∳

(a) Smooth curve and simple

(b) Piecewise smooth
curve and simple

(c) Closed but not simple

Curve C is not smooth

中央大學通訊系 張大中 **Example Analysis: Unit-2** 2011年2月20日 2012年2月20日 2012年2

Contour

- In complex analysis, a piecewise smooth curve *C* is called a **contour** or path.
- We define the positive direction on a contour C to be the direction on the curve corresponding to increasing values of the parameter *t.* It is also said that the curve C has **positive orientation (counterclockwise direction)**.

• The **negative direction** on a contour *C* is the direction opposite the positive direction. If *C* has an opposite orientation, it is denoted by *−C*. On a simple closed curve, the negative direction corresponds to the **clockwise direction**.

中央大學通訊系 張大中 **Example Analysis: Unit-2** 3

Integral of Complex Function Along a Contour

Definition

Suppose that the equation $z = z(t)$ ($a \le t \le b$) represents a contour *C*, extending from a point $z_1 = z(a)$ to a point $z_2 = z(b)$. We assume that $f[z(t)]$ is piecewise continuous on the interval $a \le t \le b$ and refer to the function $f(z)$ as being piecewise continuous on *C*. We then define the line integral, or contour integral, of f along *C* in terms of the parameter *t* :

$$
\int_C f(z) dz = \int_a^b f[z(t)]z'(t) dt.
$$

Note that the integral along *–C*,

$$
z = z(-t) \qquad (-b \le t \le -a) \qquad \qquad \overline{o}
$$

$$
\int_{-C} f(z) dz = \int_{-b}^{-a} f[z(-t)] \frac{d}{dt} z(-t) dt = -\int_{-b}^{-a} f[z(-t)] z'(-t) dt
$$

where $z'(-t)$ denotes the derivative of $z(t)$ with respect to t, evaluated at $-t$. Making the substitution $\tau = -t$ in this last integral, we obtain the expression

$$
\int_{-C} f(z) dz = -\int_{a}^{b} f[z(\tau)]z'(\tau) d\tau, \text{ this means that } \int_{-C} f(z) dz = -\int_{C} f(z) dz.
$$

中央大學通訊系 張大中 **Example Analysis: Unit-2** 4

 \mathbf{r}

Contour Integral

Suppose that $f(z) = u(z) + iv(z)$ and that $z(t) = x(t) + iy(t)$ is a parametrization for the contour C . Then

$$
\int_C f(z) dz = \int_a^b f(z(t)) z'(t) dt
$$

=
$$
\int_a^b [u(z(t)) + iv(z(t))][x'(t) + iy'(t)] dt
$$

=
$$
\int_a^b [u(z(t)) x'(t) - v(z(t)) y'(t)] dt
$$

+
$$
i \int_a^b [v(z(t)) x'(t) + u(z(t)) y'(t)] dt
$$

=
$$
\int_a^b (ux' - vy') dt + i \int_a^b (vx' + uy') dt,
$$

$$
\int_C f(z) dz = \int_C u dx - v dy + i \int_C v dx + u dy
$$

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 5

Properties of Contour Integral

Suppose the functions f and g are continuous in a domain D , and C is a smooth curve lying entirely in D . Then

- (i) $\int_C kf(z) dz = k \int_C f(z) dz$, k a complex constant.
- (*ii*) $\int_C [f(z) + g(z)] dz = \int_C f(z) dz + \int_C g(z) dz$.
- (*iii*) $\int_C f(z) dz = \int_{C_1} f(z) dz + \int_{C_2} f(z) dz$, where C consists of the smooth curves C_1 and C_2 joined end to end.
- (iv) $\int_{-C} f(z) dz = -\int_{C} f(z) dz$, where $-C$ denotes the curve having the opposite orientation of C .

Line Integral of a General Complex Function

Dependence on path.

If we integrate a given function $f(z)$ from a point $z₀$ to a point $z₁$ along different paths, the integrals will in general have different values. In other words, a complex line integral depends not only on the endpoints of the path but in general also on the path itself.

Let C be a piecewise smooth path, represented by $z = z(t)$, where $a \le t \le b$. Let $f(z)$ be a continuous function on C. Then

$$
\int_C f(z) dz = \int_a^b f[z(t)] \dot{z}(t) dt \qquad \left(\dot{z} = \frac{dz}{dt}\right).
$$

Steps in Calculation:

- (A) Represent the path C in the form $z(t)$ ($a \le t \le b$).
- **(B)** Calculate the derivative $\dot{z}(t) = dz/dt$.
- (C) Substitute $z(t)$ for every z in $f(z)$ (hence $x(t)$ for x and $y(t)$ for y).
- **(D)** Integrate $f[z(t)]\dot{z}(t)$ over t from a to b.

中央大學通訊系 張大中 **Example Analysis: Unit-2** 7

Ex 1:

Evaluate (a) $\int_C xy^2 dx$, (b) $\int_C xy^2 dy$, and (c) $\int_C xy^2 ds$, where the path of integration C is the quarter circle defined by $x = 4\cos t$, $y = 4\sin t$, $0 \leq t \leq \pi/2$.

Solution

Ex 2: Integrate $f(z) = \text{Re } z = x$ from 0 to 1 + 2*i* (a) along C^* , (b) along C consisting of C_1 and C_2 . Solution.

中央大學通訊系 張大中 **Example Analysis: Unit-2** 9

Ex 3: Evaluate $\oint_C y^2 dx - x^2 dy$, where C is the closed curve

Solution:

ML Inequality

If f is continuous on a smooth curve C and if $|f(z)| \leq M$ for all z on C, then $| \int_C f(z) dz | \leq ML$, where L is the length of C.

Proof:

The complex integral of f on C is

$$
\int_C f(z) \, dz = \lim_{\|P\| \to 0} \sum_{k=1}^n f(z_k^*) \, \Delta z_k.
$$

It follows from the form of the triangle inequality

$$
\left|\sum_{k=1}^{n} f(z_{k}^{*}) \Delta z_{k}\right| \leq \sum_{k=1}^{n} |f(z_{k}^{*})| |\Delta z_{k}| \leq M \sum_{k=1}^{n} |\Delta z_{k}|.
$$

Because $|\Delta z_k| = \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}$, we can interpret $|\Delta z_k|$ as the length of the chord joining the points z_k and z_{k-1} on C. Moreover, since the sum of the lengths of the chords cannot be greater than the length L of C, the inequality (14) continues as $\sum_{k=1}^{n} f(z_k^*)\Delta z_k \leq ML$. Finally, the continuity of f guarantees that $\int_C f(z) dz$ exists, and so if we let $||P|| \to 0$, \mathbb{Z} inequality yields $\left| \int_C f(z) dz \right| \leq ML$.

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 11

Ex 1:

$$
\left| \int_c \frac{1}{z^2 + 1} \, dz \right| \le \frac{1}{2\sqrt{5}},
$$

where C is the straight-line segment from 2 to $2 + i$.

Sol:

Ex 2:

Find an upper bound for the absolute value of $\oint_C \frac{e^z}{z+1} dz$ where C is the circle $|z| = 4$ circle $|z|=4$.

Sol:

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 13

Topology of Paths

• **Simple Closed Path**

• **Simply Connected Domain**: A simply connected domain is a path-connected domain where one can continuously shrink any simple closed curve into a point while remaining in the domain.

Simply connected 中央大學通訊系 張大中 **Example Analysis: Unit-2** 14

Simply Doubly connected connected

Triply connected

Green's Theorem

Theorem (**Green's theorem**):

Let *C* be a simple closed contour with positive orientation and let *R* be the domain that forms the interior of *C*. If *P* and *Q* are continuous and have continuous partial derivatives P_x , P_y , Q_x , and Q_y at all points on C and R , then

$$
\int_C P(x, y)dx + Q(x, y)dy = \iint_R [Q_x(x, y) - P_y(x, y)]dxdy
$$

Proof of Green's Theorem

Wonsiler Csysd $3 + 64$ $+$, $-d$ sts C_1 \geq $H \geq h_1$ $\frac{1}{2}$ $C5+6$ ϵ $Q_x(x, y)dx dy$. 6(h.(y), $=$ $\begin{pmatrix} d & 0 \\ 0 & 0 \end{pmatrix}$ $c.$ & $(h_1(-1))$ $=$ $\int_{C4} \mathbb{Q}(x,y)dy + \int_{C4} \mathbb{Q}(x,y)dy = \int_{C} \mathbb{Q}(x,y)dy$ => Ecpamitx+auxp1dy=S2(extxi)-BaxisHxdq

Cauchy Integral Theorem

Suppose that a function f is analytic in a simply connected domain D and that f' is continuous in D . Then for every simple closed contour C in D, $\oint_C f(z) dz = 0$.

Proof:

$$
\oint_C f(z) dz = \oint_C u(x, y) dx - v(x, y) dy + i \oint_C v(x, y) dx + u(x, y) dy
$$

With Green's theorem
$$
\oint_C P dx + Q dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA
$$
.

$$
\oint_C f(z) dz = \iint_R \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dA + i \iint_R \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dA.
$$

 \overline{D}

Because f is analytic in D , the real functions u and v satisfy the Cauchy-Riemann equations, $\partial u/\partial x = \partial v/\partial y$ and $\partial u/\partial y = -\partial v/\partial x$, at every point in D. Using the Cauchy-Riemann equations to replace $\partial u/\partial y$ and $\partial u/\partial x$ shows that

$$
\oint_C f(z) dz = \iint_R \left(-\frac{\partial v}{\partial x} + \frac{\partial v}{\partial x} \right) dA + i \iint_R \left(\frac{\partial v}{\partial y} - \frac{\partial v}{\partial y} \right) dA
$$
\n
$$
= \iint_R (0) dA + i \iint_R (0) dA = 0.
$$

中央大學通訊系 張大中 **complex Analysis: Unit-2**

$$
17\\
$$

Example 1:

Entire Functions

$$
\oint_C e^z dz = 0, \qquad \oint_C \cos z dz = 0, \qquad \oint_C z^n dz = 0 \qquad (n = 0, 1, \cdots)
$$

for any closed path, since these functions are entire (analytic for all z).

EXAMPLE 2 Applying the Cauchy-Goursat Theorem

Evaluate $\oint_C \frac{dz}{z^2}$, where the contour C is the ellipse $(x-2)^2 + \frac{1}{4}(y-5)^2 = 1$.

Solution

Closed Contour with Self-intersection Points

 \mathbf{v}

 \overline{O}

• If *f* is analytic at each point interior to and on C,

$$
\int_C f(z) dz = \sum_{k=1}^4 \int_{C_k} f(z) dz = 0.
$$

Example: If C denotes any closed contour lying in the open disk $|z| < 2$

$$
\int_C \frac{z \, e^z}{(z^2 + 9)^5} \, dz = 0.
$$

This is because the disk is a simply connected domain and the two singularities $z = \pm 3i$ of the integrand are exterior to the disk.

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 19

 \overline{x} \dot{v}

 \overline{O}

Independence of Path

Independence of Path

If $f(z)$ is analytic in a simply connected domain D, then the integral of $f(z)$ is independent of path in D.

Proof:

Line Integral of an Analytic Complex Function

Independence of Path.

Let $f(z)$ be analytic in a simply connected domain D. Then there exists an indefinite integral of $f(z)$ in the domain D, that is, an analytic function $F(z)$ such that $F'(z) = f(z)$ in D, and for all paths in D joining two points z_0 and z_1 in D we have

$$
\int_{z_0}^{z_1} f(z) dz = F(z_1) - F(z_0) \qquad [F'(z) = f(z)].
$$

(Note that we can write z_0 and z_1 instead of C, since we get the same value for all those C from z_0 to z_1 .)

Proof:

$$
\int_C f(z) dz = \int_a^b f(z(t))z'(t) dt = \int_a^b F'(z(t))z'(t) dt
$$

$$
= \int_a^b \frac{d}{dt} F(z(t)) dt \leftarrow \text{chain rule}
$$

$$
= F(z(t))\Big|_a^b
$$

$$
= F(z(b)) - F(z(a)) = F(z_1) - F(z_0).
$$

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 21

Line Integration of Analytic Functions

Example: Compute the integral $\int_{\Gamma} \cos z \, dz$.

Solution:

Contour Integration of Non-analytic Functions

Example

$$
\oint_C \overline{z} \, dz = \int_0^{2\pi} e^{-it} i e^{it} \, dt = 2\pi i
$$

where C: $z(t) = e^{it}$ is the unit circle. This does not contradict Cauchy's theorem because $f(z) = \overline{z}$ is not analytic.

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 23

Contour Integration of Not Simply Connected (Doubly Connected) Functions

Corollary: Let z_0 denote a fixed complex value. If C is a simple closed contour with positive orientation such that z_0 lies interior to C, then

$$
\oint_C \frac{dz}{z-z_0} = 2\pi i \quad \text{and} \quad \oint_C \frac{dz}{(z-z_0)^m} = 0,
$$

where *m* is any number except $m = 1$. Solution.

Theorem (**Deformation of Contour**):

Let C_1 and C_2 be two simple closed positively oriented contours such that C_1 lies interior to C^2 . If f is analytic in a domain D that both C^1 and C^2 are the region between them, then

$$
\int_{C_1} f(z)dz = \int_{C_2} f(z)dz
$$

Proof:

中央大學通訊系 張大中 **Example Analysis: Unit-2** 25

Multiply Connected Domains

Suppose C, C_1, \ldots, C_n are simple closed curves with a positive orientation such that C_1, C_2, \ldots, C_n are interior to C but the regions interior to each C_k , $k = 1, 2, ..., n$, have no points in common. If f is analytic on each contour and at each point interior to C but exterior to all the C_k , $k = 1, 2$, \ldots , n, then

$$
\oint_C f(z) dz = \sum_{k=1}^n \oint_{C_k} f(z) dz.
$$

Ex 1: Evaluate
$$
\oint_C \frac{5z+7}{z^2+2z-3} dz
$$
, where *C* is circle $|z-2|=2$.

Sol:

EX 2: Evaluate
$$
\oint_C \frac{dz}{z^2 + 1}
$$
, where *C* is the circle $|z| = 4$.

Sol:

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 27

EX 3: Evaluate $\int_{\Gamma} 1/(z^2-1) dz$, where Γ is depicted as below.

Sol:

EX 4: Show that $\int_C \frac{z-2}{z^2-z} dz = -6\pi i$, where C is the "figure eight" contour

Sol:

(a) The figure eight contour C .

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 29

Cauchy Integral Formula

Theorem. Let f be analytic everywhere inside and on a simple closed contour C, taken in the positive sense. If z_0 is any point interior to C, then

$$
f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z) dz}{z - z_0}.
$$

Proof:

EX 1: Evaluate $\oint_C \frac{z^2 - 4z + 4}{z + i} dz$, where C is the circle $|z| = 2$.

Solution

EX 2: Evaluate
$$
\oint_C \frac{z}{z^2 + 9} dz
$$
, where *C* is the circle $|z - 2i| = 4$.
Solution

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 31

EX 3: Integrate $g(z) = \frac{z-1}{z-1}$ counterclockwise around (a), (b) and (c) contours. 2 $(z) = \frac{z^2 + 1}{z^2 - 1}$ *g z z* $=\frac{z^2+1}{1-z}$ $\frac{1}{z^2}$ -

 $\overline{a)}$

Ex 4: Evaluate the integral

$$
\oint_{\Gamma} \frac{\cos z}{z^2 - 4} dz
$$

along the contour Γ .

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 33

EX 5: Compute

$$
\oint_C \frac{z^2 e^z}{2z + i} dz
$$

where *C* is the unit circle $|z|=1$ traversed in the clockwise direction. **Sol:**

Exercise: Compute (in the counterclockwise direction)

 \sim

$$
\oint_C \frac{z^2 + 3z + 2i}{z^2 + 3z - 4} dz;
$$
\nfor (a) C: |z|=2, (b) C: |z+5|=2, and (c) |z|=5.

Ans: (a)
$$
(8\pi i - 4\pi)/5
$$
; (b) $-(8\pi i - 4\pi)/5$; (c) 0

Extension of the Cauchy Integral Formula

Verify that

$$
f'(z) = \frac{1}{2\pi i} \int_C \frac{f(s) ds}{(s-z)^2}
$$

where *z* is interior to *C* and where *s* denotes points on *C*. **Sol:**

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 2000 - 2000 - 2011

Cauchy's Integral Formula for Derivatives

If $f(z)$ is analytic in a domain D, then it has derivatives of all orders in D, which are then also analytic functions in D. The values of these derivatives at a point z_0 in D are given by the formulas

$$
f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz
$$

$$
f''(z_0) = \frac{2!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^3} dz
$$

and in general

$$
f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz \qquad (n = 1, 2, \cdots);
$$

here C is any simple closed path in D that encloses z_0 and whose full interior belongs to D; and we integrate counterclockwise around C

中央大學通訊系 張大中 **Example Analysis: Unit-2** 36

EX 1: Contour *C* encloses πi in counterclockwise sense,

$$
\oint_C \frac{\cos z}{(z - \pi i)^2} dz =
$$

EX2: Contour C encloses $-i$ in counterclockwise sense,

$$
\oint_C \frac{z^4 - 3z^2 + 6}{(z + i)^3} \, dz =
$$

EX3: Contour C encloses 1 and $\pm 2i$ lies outside in counterclockwise sense,

$$
\oint_C \frac{e^z}{(z-1)^2(z^2+4)}\,dz =
$$

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 37

EX 4: Evaluate $\oint_C \frac{z+1}{z^4+2iz^3} dz$, where *C* is the circle $|z|=1$.

Solution

EX 5: Evaluate $\int_C \frac{z^3 + 3}{z(z - i)^2} dz$, where C is the figure-eight contour **Sol:**

中央大學通訊系 張大中 **Examplex Analysis: Unit-2** 39

Cauchy's Inequality

Suppose that f is analytic in a simply connected domain D and C is a circle defined by $|z - z_0| = r$ that lies entirely in D. If $|f(z)| \leq M$ for all points z on C , then

$$
f^{(n)}(z_0)\Big| \le \frac{n!M}{r^n}.
$$

Proof: