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Convergence Sequence

Convergence:

A convergent sequence 71, Zo. - 1s one that has a limit ¢, written
lim z,, = ¢ or simply A
il —sm0

Mathematical Definition: For every € > 0, we can find an N such that
|z, —c| <€ forall n>N
Geometrically, all terms with lie in the open disk of radius € and center c and only

finitely many terms do not lie in that disk.

¥

X

Convergent complex sequence

Cauchy’s Convergence Principle for Series

A series 21 + 29 + - is convergent if and only if for every given € = () (no matter
how small) we can find an N (which depends on €, in general) such that

(3) |zps1 + Zpso + - + ;.n+p| < € foreveryn = Nandp = 1,2,---
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Example:

an—+1 sri+1
i _ ]
! - 5 =) - =) ) F . JS I..I ) . : L] I..I r 5 I..‘ :
The sequence converges since lim 0. As we see from
Th L— O T
) i1 1 1
1 2 bl 3 bl 4 b 5 b L]

the terms of the sequence, marked by colored dots in the figure, spiral in toward

the point z = 0 as n increases.
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Criterion for Convergence

A sequence {z,} converges to a complex number L = a + ib if and only if
Re(z, ) converges to Re(L) = a and Im(z,, ) converges to Im(L) = b.

Example:

3+ ni
Consider the sequence ¢ ——— ». From
n -+ 2ni

34+ni (34 ni)(n—2ni) 2n?+ 3n N n? —6n
= = 1
n + 2ni n2 + 4n? Hn? 5n2

we see that

Re(z,) M +3n 2 N 3 2
elz, )= —— == — =
" 5n2 5  bn 5
| I ( ] n? — 6n 1 6 1
anc m(z )= — — — _ _ — _,_
" 5n2 5 bBn 5

the last results are sufficient for us to conclude that the given sequence converges
N > .
to a+ib= ¢ i

!
y
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Convergent Series

Convergent series

Given a sequence z,,Z,,'**,Z,, *, in general,

Sh=Z1+z, + -+ 2z,
s, is called the nth partial sum of the infinite series. A convergent series is one whose
sequence of partial sums converges, say,

=
.]TEE: Sp = S. Then we write 5= 2 Im =21+ 29+ -
m=1

and call s the sum or value of the series. A series that is not convergent is called a
divergent series.

Divergence Theorem

If a series 21 + zo9 + -+ converges, then im z,, = 0. Hence if this does not hold,
. . Yr—*3
the series diverges.

Proof
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Absolute and Conditional Convergence

An infinite series > =z is said to be absolutelv convergent if
k=1 ~k
S oo 1 |zk| converges. An infinite series 77 | 2z is said to be condi-

tionally convergent if it converges but > 7 | |zx| diverges.

Remark: The absolute convergence of a series of complex numbers implies
the convergence of that series.

A 5 — L) =0
b M40
Oro~ B =0 ~E sexies lonverges
o 4 -
= et
X gfar\@ P HETYTE T does ndf tonver es.
- Wws|
——p—emi = =
=(~3t3I Tt conlerqes
= ____)_Smw_-v\d___n__.____a X" N L HReE
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Geometric Series

Geometric Series

The geomelric series

qu:1+q+q2+---

m=0
converges with the sum 1/(1 — q) if \g| < 1 and diverges if |g] = 1.

Proof:
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Example:

The infinite series

- 1+*:-;) _1+2 (142i)° (14 2i)°
Z 5 + 52 + R3
=1 '

is a geometric series. It has the form z = (1 + 2i).

Since |z| = v/5/5 < 1, the series is convergent and its sum is
14 2
— (1+2i)* 5 1420 1.
2 T T i moi-a 2
k=1 1 -

5]
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Comparison Test

is given and we can find a convergent series by + by +

If aserieszy + 29 + ---
Zo| = by, -+, then the given series

with nonnegative real terms such that |z1| = by.

converges, even absolutely.

Proof:
By Cauchy’s principle, since b; + bs + --- converges, for any given € > () we can find
an N such that

bpi1+ -+ byip <€ foreveryn = Nandp =1,2,---
From this and |z1| = by, |25 = bs, - - we conclude that for those n and p,
|zn+1| + -+ |3n+p| =byiq oot bn+p < E.

Hence, again by Cauchy’s principle, |z;| + |zo| + -+ converges, so thatz; + zo + - is
absolutely convergent. |

LR & LA R Complex Analysis: Unit-3
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Example: Show that the following series converges.

2 3+ 2
Z(n+l)n

n=0

Sol:

TN & Ul I Complex Analysis: Unit-3
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Ratio Test

Ifaserieszy + 2o + - withz,, + 0(n =1, 2,---) has the property that for every
n greater than some N,

im+1

=g <1 (n = N)

-

in

(where g << 1 is fixed), this series converges absolutely. If for every n = N,

in+1

[

(n = N),

—_—
“ T

the series diverges.
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Limitation Version of Ratio Test

in+1

If a seriesz1 + zo + - withz, # O0(n = 1,2, ---) is such that ?{im = L,

themn: '

im

(a) If L << 1, the series converges absolutely.
(b) If L = 1, the series diverges.

(e) If L = 1, the series may converge or diverge, so that the test fails and
permits no conclusion.

Remark:

(¢) The harmonic series | + 5 + 3 + --- has Zn+1/Zn = n/(n + 1), hence L = 1, and
diverges. The series

- 2
1 1 1 | In+1 n
l+—+—-+—=+ =+ --- has = 7. 7
4 9 16 25 In (n + 1)
hence also L = 1, but it converges. Convergence follows from (Fig. 364)
Area 1
i
| | dx 1
s, =1+-+--+==1+ 5 = 2 — —,
" 4 n2 J X2 n 0
1 Fig. 364. Convergence of theseries 1+ 3 + 3 + & + ...
so that sq, 59,--- is a bounded sequence and is monotone increasing (since the terms of

the series are all positive); both properties together are sufficient for the convergence of
the real sequence 51, 59, .
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Note: harmonic series

I 1 1 11
4+ —+—+—+—+—+
2 3 4 5 6 7 8 9

N 1 N
Z}?{1+

n=1 1 n=2 ﬂ(ﬂ 1) -

Example: Show that Z

=1

AT VR SN

(3 +ai)°

o>

=l+—+—+—=--:=
2 2 2

N

1+2,

Proof

NMORCHEE

1 1

-

CONnverges.

11 1]
_+_+_ +...
8 8 8

1

[ a]

—1+1—£—<235N—%cq
N
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EX 1: Is the following series convergent or divergent?

= (100 + 750"

2

=1

mn! 2

Sol:

oo =5 T
EX2: Show that 3 (1- T) CONVErges.

TL:
1=

Sol:
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EX3: Leta, =i 2% and b, = 1 / 2311 1< the following series convergent or divergent?

i .
t+—+ —

1
.-|.- —_—
16 64 128

agt+ by tay by k=04 =+ o

!
8

bd | =

Sol:

[nu] g
. . 2—i ;
EX 4: Show that the series > ( 9.”_] converges for all values of
=0

z in the disk |z —i| < 2 and diverges if |z — | > 2.

Sol:

LRI £ U= I Complex Analysis: Unit-3
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Root Test

If a series z1 + zo + --- is such that for every n greater than some N,
i
) Viznl =g <1 (n>N)

(where q << 1 is fixed), this series converges absolutely. If for infinitely many n,
(10) Vizal = 1,

the series diverges.
Proof:

If (9) holds, then |:ﬂ| = g" < 1 for all n = N. Hence the series |zl| + |32| + -
converges by comparison with the geometric series, so that the series 77 + 29 + ---
converges absolutely. If (10) holds, then |z,,| = 1 for infinitely many n. Divergence of
21 + 29 + --- now follows from the Divergence Theorem. [

Remark: limitation version of geometric series
Root Test

. . . . n
If a series z1 + zo + +-- is such that lim V |z,.| = L, then:
n—=
(a) The series converges absolutely if L < 1.
(b) The series diverges if L > 1.

(¢) If L = 1, the test fails; that is, no conclusion is possible.

B Bk GEA Y Complex Analysis: Unit-3 16



Power Series

A power series in powers of z — z is a series of the form

(1) > anz — z0)" = ap + a1(z — zo) + as(z — zo)> + -
11.=1)

where 7z 1s a complex variable, agy, aq,--- are complex (or real) constants, called the
coefficients of the series, and z¢ is a complex (or real) constant, called the center of the

series. This generalizes real power series of calculus.
It zy5 = 0, we obtain as a particular case a power series in powers of z:

LR & LA R Complex Analysis: Unit-3
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Convergence of a Power Series

(a) Every power series (1) converges at the center Zy.

(b) If (1) converges at a point 21 F Zp. it converges absolutely for every z
closer to zg than z1, that is, |z — Z[]| < \zl — z{;.|.

(e) If (1) diverges at z = z9, it diverges for every z farther away from 2 than

~~_ Divergent

Z9
Proof: 5'*'
e
F
s
i
I f Conv.
l|I o
L] \ z
~ L v
\ N
i
)
Ty
""-.____.-

LR - S TAE W Complex Analysis: Unit-3 |
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Circle of Convergence

If a power series converges everywhere within a circle for all z for

which Divergent
|z —z5] <R
then |z — z,| is called the circle of convergence and R the radius
of convergence.
X
Example 1.
Behavior on the Circle of Convergence
On the circle of convergence (radius R = 1 in all three series),
¥ z"/n* converges everywhere since ¥ 1/n” converges,
2 z"/n converges at — 1 (by Leibniz’s test) but diverges at 1,
> z"  diverges everywhere.
19
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Notations R = <and R = (0. To incorporate these two excluded cases in t
notation, we write

R = = 1f the series (1) converges for all 7 (as in Example 2),
R = 0 1f (1) converges only at the center z = zg (as in Example 3).

Example 2

The power series

w0 2 3
E'_=1+:+;+;+...
n! 20 3

=0

15 absolutely convergent for every z. In fact, by the ratio test, for any fixed z,

-
£

= — ) as n— oo,
n+ 1

2+ 1)

=i
z /n!

Example 3

he present

The following power series converges only at z = 0, but diverges for every z # (), as we shall show.

En!:”= 1+ 24 222 + 625 + -+
=10

In fact, from the ratio test we have

(n + 1)1
=m+ |zl — = as H—> %

P

iz
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Radius of Convergence R

Theorem

Suppose that the sequence |aﬂ+1,’an|,n = 1,2,---, converges with limit L*. If
L™ =0, then R = =; that is, the power series (1) converges for all z. If L™ # 0
(hence L™ = 0), then

1 :
R=F = a

p+1

If |aﬂ+1ﬁnﬂ| —> 0, then R = 0 (convergence only at the center zg).

Proof:

LR & LA R Complex Analysis: Unit-3
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= (2n)!
2

(z — 3{-}11

Ex 1: Find the radius of convergence of the power series
Sol: n=0 (n!)

: : : o (—1)kF!
EX 2: Find the radius of convergence of the power series ( ;'1 (z — 1 —4)"
k=1 2
Sol:
Pk Bk R Complex Analysis: Unit-3
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Radius of Convergence for Root Test

For a power series > . (2 — z0)" | the radius of convergence for root test is

R=1/L, whereL=IlimyY/|a,|.

n—oo
Proof:
Example:
L.
, _ < 6k +1 e -
Consider the power series »° (z—2i)~,

LRI £ U= I Complex Analysis: Unit-3
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Ex: Find the circle and radius of convergence of the following power series:

S (-1 [”22":] (z+20)

Sol:



Uniqueness of Power Series

Theorem

Let the power series ay + a1z + a232 + - and by + byz + bz:;g + -+ both be
convergent for |z| < R, where R is positive, and let them both have the same sum
Jor all these z. Then the series are identical, that is, ag = bp, a1 = b1, as = bo, - --.

Hence if a function f(z2) can be represented by a power series with any center Zy,
this representation is unigue.

Proof:

LR & LA R Complex Analysis: Unit-3
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Term-by-Term Differentiation of Power Series

Theorem

A power series Y7 ap(z — z0)® can be differentiated term by term
within its circle of convergence |z — zy| = R.

Proof:

¢

Differentiating a power series term-by-term gives,

d ] = d ] - B
=Y ak(z—20)" =) k(2 —20)* =D ark(z - z0)* "
h.ﬁ::ﬂ fe=0 ’ k=1

Note that the summation index in the last series starts with &£ = 1 because
the term corresponding to k = 0 is zero. It is readily proved by the ratio test
that the original series and the differentiated series,

o0 o0
Z a(z — zn}k and Zakk(z - zn]k_l
k=0 k=1

have the same circle of convergence |z — zg| = R. Since the derivative of
. . . . . ] .IIC

a power series is another power series, the first series >~ | ax(z — 29)" can

be differentiated as many times as we wish. In other words, it follows that,

a power series defines an infinitely differentiable function within its circle of

convergence and each differentiated series has the same radius of convergence R
as the original power series.

Bk kY Complex Analysis: Unit-3
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Integration of Power Series

Theorem
A power series Y 7 ak(z — zp)* can be integrated term-by-term within
its circle of convergence |z — zg| = R, for every contour C' lying entirely
within the circle of convergence.

Proof:

The theorem states that

/pzaa(w — zo)Fdz = gu#/( (2 — z0)* d2

k=0

whenever C' lies in the interior of | z — zp| = R. Indefinite integration can also
be carried out term by term:

o) 4 constant.

k=0
The ratio test can be used to be prove that both

Z ap(z — zp)* and O (z — zg)kH?
— k41

have the same circle of convergence |z — zy| = R

LR & LA R Complex Analysis: Unit-3
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Multiplication of Power Series (Cauchy Product)
Suppose that each of the power series
oo o0
Znn(z —20)" and an(z —z0)"
n=>0 n=0
converges within some circle |z — zg| = R. Their sums f(z) and g(z), respectively,

are then analytic functions in the disk |z — zp| < R, and the product of those sums
is valid there: o

f(2)gz) = ch(z — z0)" (|z — z0| < R).
n=0
Proof: |
co = f(20)g(20) = aobp.
f(z0)g'(z0) + f'(z0)g(20)
1!
f(z0)g"(z0) + 21" (z0)g' (z0) + " (20)8(20)
2!
The general expression for any coefficient ¢, is easily obtained

| . Sy g - my__ n
[f(z}g(z)](Eg(k)ﬂ”{z}g‘ Yo =12 where ()=

c] = = apby + aby,

= agby + a1by + azby.

cp =

n

f”( 0 2" P(z0)
= = Z TP LR

k=0

LR & LA R Complex Analysis: Unit-3




Example: Find the power series of ¢°/(1 + z) in the open disk |z| < 1.

Sol:

TN & Ul I Complex Analysis: Unit-3
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Division of Power Series

Suppose that each of the power series

o0 o0
(1) Y an(z—z0)" and ) ba(z —z0)"
n=>0 n=0
converges within some circle |7 — 79| = R.
Continuing to let f(z) and g(z) denote the sums of series (1), suppose that

2(z) # 0 when |z — zo] < R. Since the quotient f(z)/g(z) is analytic throughout
the disk |z — zp| < R, it has a power series representation

f("') oo
- :Zdn(z—zm” (lz — 20| < R),
gz) =

where the coefficients d, can be found by differentiating f(z)/g(z) successively
and evaluating the derivatives at 7 = z9. The results are the same as those found
by formally carrying out the division of the first of series (1) by the second.

LR & LA R Complex Analysis: Unit-3



Example: Find the power series of
1
z2sinh z
Sol:

TN & Ul I Complex Analysis: Unit-3

0<|z| <m.
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Taylor’s Theorem

Theorem

Let f be analytic within a domain D and let z3 be a point in [D. Then f
has the series representation

Z I }(z:n (2 = En]k

valid for the largest circle ' with center at z; and radius R that lies
entirely within D.

Proof:

LR & LA R Complex Analysis: Unit-3
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Proof of |Rn(z)] -0 as n— o0

Proof of |Rn(z)] -0 as n—o0:

T EE VR T

Complex Analysis: Unit-3
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Maclaurin Series
Definition: A Taylor series with center z; = 0,

-

oy
J'I[ZF - Z ] Jn"t;!x } Ej‘i

k=0

is referred to as a Maclaurin series.

Some Important Maclaurin Sertes

2 oo 1=
= Z e . =
F ol 2D S
k=0
R B oo I‘ L2k
Fng =g D = (e
= ;K ) SR
32 znl- == kzz.k:
sp =l =l o= (=)
o5 S 5= o oy 2( ) m)

Example: Find the Maclaurin series of tan z.
Sol:

LRI £ U= I Complex Analysis: Unit-3
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Radius of Convergence for a Taylor Series

« We can find the radius of convergence of a Taylor series in exactly with the ratio
test or the root test.

 However, we can simplify matters even further by noting that the radius of

convergence R is the distance from the center zo of the series to the nearest
isolated singularity of f.

Remark: An isolated singularity is a point at which f fails to be analytic but is,
nonetheless, analytic at all other points throughout some neighborhood of the
point.
Example:
3 —1
1—14 =z
center zp = 4 — 2¢. What is 1ts radius of convergence R7

Suppose the function f(z) = is expanded in a Taylor series with

Solution

LA A TR S Complex Analysis: Unit-3 36



Theoretical Method for Taylor Series

EX 1: Find the Maclaurin expansion of f(z) = 1/(1 — z).
Sol:

EX 2: Find the Maclaurin expansion of €~ .
Sol:

EX 3: Find the Maclaurin expansion of sinz,
Sol:

TN & Ul I Complex Analysis: Unit-3
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EX 4: Find the Maclaurin expansion of sinh z
Sol:

EX 5: Find the Maclaurin expansion of Ln(1+z).
Sol:

TN & Ul I S Complex Analysis: Unit-3
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Substitution Method (Uniqueness of Power Series) for Taylor Series

EX 1: Find the Maclaurin expansion of f(z) = 1/(1 + z%).
Sol:

EX 2: Find the Maclaurin expansion of fiz) = arctan z.
Sol:

1 + 272
3470

EX 3: Find the Maclaurin expansion of f(z) =
Sol: ‘

R £ U= R Complex Analysis: Unit-3
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EX 4: Find the Maclaurin expansion of f(z) =

(1—-2)%
Sol:
.3
Note: Maclaurin expansion of f(z) = ﬁ
3 -
~ 3 4, o5 k+2 cadine : _
T 349,403,585 = L 2%*2  the radius of convergence R = 1.
(1—2)2 ;

LR & LA R Complex Analysis: Unit-3
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EX5: Expand f(z) =
Sol:

in a Tavlor series with center zg = 2i.

1

Remark: Checking the radius of convergence with the root test,

R = = =Iim|1—2i|nn+1=|1—2i|=»\/§

I- 1 n—oo
nETo]o n’A_ 2i|n+l

TN & Ul I Complex Analysis: Unit-3
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EX 6: Expand f(z)
Sol:

S AR

35—

1—i4 =

in a Taylor series with center z; = 4 — 24,

Complex Analysis: Unit-3
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EX 7: Find the Taylor series and its convergence region of the following function with
center z, =1.
27°+92+5

z2°+7°-82-12

f(z) =

Sol:

LRI I A Complex Analysis: Unit-3 43



Laurent Series

Motivation

If a function f(z) fails to be analytic at a point z,, one cannot apply Taylor’'s theorem
at that point. Laurent series generalize Taylor series to find a series representation for f(z)

involving both positive and negative powers of z — z,.

Example
sin z | i . i .
is not analytic at the isolated singularity z = (0 and

The function f(z) = g
hence cannot be expanded in a Maclaurin series. However, sin z is an entire

function, we know that its Maclaurin series,
P T D
sinz =z —+ — — — + — —
3R T
< oo. By dividing this power series by z* we obtain a series

b
£

converges for
for f with negative and positive integer powers of z:
analytic

principal
part part
. _——— .A = -
sin z 1 1 2 23 2°
- AT TR T

(2) = 74 23 312

A

The analytic part of the series converges for |z| < oo. The principal part is
> 0. Thus f(z) converges for all z except at z = 0; that is, the series

valid for |z
representation is valid for 0 < |z| < oc.

Complex Analysis: Unit-3
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Laurent’s Theorem

Theorem. Suppose that a function f is analytic throughout an annular domain
R1 < |z — z0] < Ry, centered at zg , and let C denote any positively oriented simple

closed contour around zo and lying in that domain. Then, at each point in the
domain, f(z) has the series representation

f(z)—Zﬁn(m—zn} +Z(z— (R1 < |z — 20| < R2),
n=>0 n=1
where
1 f(z) dz
n = =0,1,2,...
a 25 -[C (z — ZD)"+1 (1 )
and
1 (2) d
b, = f f(2) dz - =12,
2ni Jo (z —zo)™t

LRI £ U= I Complex Analysis: Unit-3

45



Proof:

T EE VR T

Proof of Laurent’s Series

Complex Analysis: Unit-3
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Theoretical Method

Example: Find the power series of f(z)=e?/z%, |z|>0.
Sol:

TN & Ul I Complex Analysis: Unit-3
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Substitution Method

Although f(z)=¢’/z* is analytic for |z|>0, but is not analytic at z=0. Thus, the
Maclaurin series does not exist from the theoretical method.

However, e° for |z[>0 has the Maclaurin series as
Z 2 3

- A
Z——1+z+—+—+
n! 2! 3!

From uniqueness of power series, the representation of e?/z* in power series can be
obtained as

f(z) i Z—i+i+i+£+£+z_2+
2 2 72 21z 31 4 5l

For all z such that |z]|>0.

LA A TR S Complex Analysis: Unit-3 50



2.1/z
e

EX 1: Find the Laurent series of z with center 0.

Sol:

EX: Find the Laurent series that represents the function

1
f2)=7° sin(z—z)

in the domain 0 < |z| < oC.

o0 (_1).!: 1

LI S TR W S Complex Analysis: Unit-3
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EX 2: Find the Laurent series of 1/(1—2) for (a) |z|<1 (b) |z|>1.
Sol:

EX 3: Find the Laurent series of 1/(z°-z%).
Sol:

TN & Ul I Complex Analysis: Unit-3
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—-22+3

EX 4: Find the Laurent series of f(z)=———.
2°-32+2

Sol:

TN & Ul I Complex Analysis: Unit-3
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EX 5: Find the Laurent series of f(z)=——.
2+2—-12

Sol:

TN & Ul I Complex Analysis: Unit-3
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