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FRREEBME FAT Complex Analysis: Unit-3

Convergence Sequence

Convergence:
A convergent sequence 7, Zo,--- 1s one that has a limit ¢, written
lim z,, = ¢ or simply in—>C.

n—0

Mathematical Definition: For every € > 0, we can find an N such that

|z, —cl <€ forall n>N
Geometrically, all terms with lie in the open disk of radius € and center ¢ and only
finitely many terms do not lie in that disk.

Convergent complex sequence

Cauchy’s Convergence Principle for Series
A series zq + zo9 + -+ is convergent if and only if for every given € = 0 (no matter
how small) we can find an N (which depends on €, in general) such that

(5) lzps1 + Zpsa + - + ;:,,E+p| < € foreveryn > Nandp =1,2,---
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Example:

i‘ﬂ.—|—1 srn+1
} converges since lim = 0. As we see from
n

n—oc 1l

The sequence {

i 1 4 1
oo e
2°3° 47 5

the terms of the sequence, marked by colored dots in the figure, spiral in toward

the point z = 0 as n increases.
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Criterion for Convergence

A sequence {z,} converges to a complex number L = a + ib if and only if
Re(z,) converges to Re(L) = a and Im(z,,) converges to Im(L) = b.

Example:
34 ni

—— ». From
n + 2ni

Consider the sequence {

3+ ni (3+ ni)(n —2ni)  2n?+3n 4 n? —6n
Zn = = = i
" n42ni n? 4 4n? 5n? 5n?

we see that

and Im(z,) = ———

the last results are sufficient for us to conclude that the given sequence converges

. bl .
to a -+ ib= =+ i}r
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Convergent Series

+ Convergent series

Given a sequence Zq,Z,,***,2Zn, ", in general,

Sn=2z+z,+--+2z,
s, is called the nth partial sum of the infinite series. A convergent series is one whose
sequence of partial sums converges, say,

- -]
lim s,, = s. Then we write 5= E Im =21+t 29+ -+
n=—>0
m=1

and call s the sum or value of the series. A series that is not convergent is called a
divergent series.

* Divergence Theorem

If a series 71 + 79 + -+ converges, then lim z,, = 0. Hence if this does not hold,
. . f—
the series diverges.

Proof

FRREEBME FAT Complex Analysis: Unit-3

Absolute and Conditional Convergence

An infinite series >~ .z, is said to be absolutely convergent if
k=1
S ey |zk| converges. An infinite series .7 | z; is said to be condi-

tionally convergent if it converges but >,

zi| diverges.

Remark: The absolute convergence of a series of complex numbers implies
the convergence of that series.

s o = -ZA, ‘ZLU\‘ —_—0
M

Do B =0~ seAies Lonveryes

3 ot T ST
a5 gfaﬂes' =L = W Ststpt does ndf lonverges.
< ws| : =
== : —e——+ ' —
oo 5 L—(~Stx-7¢ converses.
= =l E=ay o Ftd — ==

FRREEBME FAT Complex Analysis: Unit-3




Geometric Series
Geometric Series

The geomelric series

Sg"=1+qg+q¢*+ -

=10

converges with the sum 1/(1 — g) if lg| < 1 and diverges if |g| =

Proof:
b R LEMEA RAT Complex Analysis: Unit-3
Example:

The infinite series

Zx 1+9.r 142 (142)°  (142)°
= + + r3
1 ] -.l‘ o

is a geometric series. It has the form z = 1(1 + 2i).

Since |z| = \/an") < 1, the series is convergent and its sum is
) 14 2i
(14 20)% 5 142 1,
> 1+21  4-2 2
k=1 - —
\)
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Comparison Test

If a series 2y + 2o + --- is given and we can find a convergent series by + by +
with nonnegative real terms such that |z, = by, |zo| = bo, - - -, then the given series
converges, even absolutely.
Proof:

By Cauchy’s principle, since by + by + --- converges, for any given € > () we can find

an N such that

bpy1+ -+ bpip < € foreveryn >Nandp =1,2,---
From this and |z;| = by, |25] = b, -+ we conclude that for those n and p,

:'-n+1| + -t |:’-n+p| Ebys t 0 F bn+p < €.

Hence, again by Cauchy’s principle, |z;| + |z5| + --- converges, sothatz; + z9 + -+ - is
absolutely convergent.
FRREEBME FAT Complex Analysis: Unit-3 9
Example: Show that the following series converges.
i 3+2i
n=0 (n + 1)"
Sol:
10
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Ratio Test

Ifaserieszy + 2o + - withz, ¥ 0(n = 1, 2,---) has the property that for every
n greater than some N,

in+1

=g <1 (n = N)

in

(where g << 1 is fixed), this series converges absolutely. If for every n = N,

Lm+1
— =1 (n = N),
T
the series diverges.
FRREEBME FAT Complex Analysis: Unit-3 11

Limitation Version of Ratio Test

. . . . in+1
Ifa serieszq + zo + - withz, # 0(n=1,2,---)is such that im |— =L,
== | dn
then:
(a) If L < 1, the series converges absolutely.
(b) If L = 1, the series diverges.
(¢) If L = 1, the series may converge or diverge, so that the test fails and
permits no conclusion.
Remark:
(¢) The harmonic series 1 + 3 + % + --- has Zu+1/2n = n/(n + 1), hence L = 1, and
diverges. The series
PR IO S U SO has | mrto_n?
4 9 16 25 ) Zn n+ )2’
1
hence also L = 1, but it converges. Convergence follows from (Fig. 364)
Area 1 Area% Area%
1
. 1 1 dx - 1 Ar-ea1 B ——
.T?L—1+Z+"'+F51+J?—2_H. 0 1 e P 3 n
! Fig. 364. Convergence of the series 1 + 3 + 3 + & + ---
so that s1, s2.--- 1s a bounded sequence and is monotone increasing (since the terms of

the series are all positive); both properties together are sufficient for the convergence of
the real sequence sq, §9, " .
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Proof

1 1 [l} [l 1 1 1 1 l]
—+ =+ S+ = [+ [ o+ |+
8 9 2) \4 4 8 8 8 8

1 1 1
=l+—+—+—+:--=00
2 2 2

Note: harmonic series

1+—

I 1. 1 1 1 1
+—+—+—+—+—+
2 3 4 5 6 7

Note: Z—< Z I —1+i[L—l]:l+l—%<235N—>m.

n=1 n=2 n’(”’ 1) n=2\ 1 _1 n

Example: Show that Z (?_j‘rl;}; converges.

=1
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EX 1: Is the following series convergent or divergent?

= (100 + 750)" o s
> =1+ (100 + 75i) + —(100 + 75)* + ---

Sol:

o0 H T
EX 2: Show that 5 % converges.
=0

Sol:

o REEMA RAF Complex Analysis: Unit-3 14




EX3: Leta, = i/2*" and b,, = 1/2*" "1, Is the following series convergent or divergent?

1 i1 i 1
o+ b+ oy F by b= i b — e
o+ botayt by 2 8 16 64 128

Sol:

[=ts] R
. : 2—=1 .
EX 4: Show that the series 5 ( ‘2"] converges for all values of
=0

z in the disk |z — 4| < 2 and diverges if |z — 1| > 2.
Sol:
FohREEMA RAF Complex Analysis: Unit-3 15
Root Test
If a series z1 + z9 + --- is such that for every n greater than some N,
(9) Vznl =g <1 (n > N)
(where g << 1 is fixed), this series converges absolutely. If for infinitely many n,
(10) Vil = 1,
the series diverges.
Proof:

If (9) holds, then |:n| =g" <1 for all n > N. Hence the series |z_1| + |z_2| + -
converges by comparison with the geometric series, so that the series z1 + z9 + -~
converges absolutely. If (10) holds, then |z,,| = 1 for infinitely many n. Divergence of
71 + 29 + --- now follows from the Divergence Theorem. |

Remark: limitation version of geometric series
Root Test

- . . . L
If a series z1 + zg + -+ is such that lim V|z,| = L, then:
yi—e

(a) The series converges absolutely if L < 1.
(b) The series diverges if L > 1.

(¢) If L = 1, the test fails; that is, no conclusion is possible.

FRREEBME FAT Complex Analysis: Unit-3 16




Power Series

A power series in powers of 7 — z is a series of the form

(1) 2 an(z — z0)" = ap + a1(z — z0) + as(z — z9)® +
n=0

where z is a complex variable, ag, aq,--- are complex (or real) constants, called the
coefficients of the series, and zg is a complex (or real) constant, called the center of the

series. This generalizes real power series of calculus.
If z4 = 0, we obtain as a particular case a power series in powers of z:

N anz™ = ap + a1z + ax® +

1n=>0

FRREEBME FAT Complex Analysis: Unit-3
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Convergence of a Power Series

(a) Every power series (1) converges at the center Zg.

converges al a point z = z Zo. it converges absolutely for every z
(b) If (1) ges at a point 1 # Zo. i1 ges absolutely )
z = zol < lz1 — zol.

closer to zg than z1, that is,
(c) If (1) diverges at 7 = zo, it diverges for every 7 farther away from 7 than

2
Proof: y

o -

,__

-
oo
e

P REEMA RRT Complex Analysis: Unit-3 |
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Circle of Convergence

If a power series converges everywhere within a circle for all z for ¥

which

Divergent

|z —zo] <R
then |z — z,| is called the circle of convergence and R the radius

of convergence.
x

Example 1:
Behavior on the Circle of Convergence

On the circle of convergence (radius & = 1 in all three series),

. 2 . . 2
Y z"/n” converges everywhere since X 1/n” converges,

"/n converges at —1 (by Leibniz's test) but diverges at 1,

b

" diverges everywhere.

kA

FRREEBME FAT Complex Analysis: Unit-3 19

Notations R = «wand R = 0. To incorporate these two excluded cases in the present
notation, we write

= = if the series (1) converges for all z (as in Example 2),
R = 0 if (1) converges only at the center z = zg (as in Example 3).

Example 2

The power series

is absolutely convergent for every z. In fact, by the ratio test, for any fixed z,

|*L-|

= — ) a8 no—* oo,
n+1

2+ 1)1 ‘

.
z /nl

Example 3
The following power series converges only at z = (), but diverges for every z # (), as we shall show.

0
D onlz=1+z+ 222 + 6% + -
=0

In fact, from the ratio test we have

(n+ 1)1zn+1
_— 721 - = as n— (z fixed and #0).

=in+ 1)

_n
nlz
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Radius of Convergence R

Theorem

Suppose that the sequence |an+1fan|, n=12---, converges with limit L*. If
L™ =0, then R = =: that is, the power series (1) converges for all z. If L* # 0
(hence L™ = 0), then

dp+1

If |crn*1f’an| — %, then R = 0 (convergence only at the center 7).

Proof:

FohREEMA RAF Complex Analysis: Unit-3 21
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Ex 1: Find the radius of convergence of the power series 5z~ 30"

Sol: n=0 (11)
, , , oo (—1)k !

EX 2: Find the radius of convergence of the power series 3° ———— (= — 1 —i)*

Sol: =

o REEMA RAF Complex Analysis: Unit-3 22




Radius of Convergence for Root Test

For a power series Y, @r(z — z0)" | the radius of convergence for root test is

R=1/L, where L=1im¢/|a, |

n—>0
Proof:
Example:
, k
. .2 ek 41 L
Consider the power series 3° | —— | (z—2i)".
FRALEME FTAT Complex Analysis: Unit-3
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Ex: Find the circle and radius of convergence of the following power series:

> -1y [”2”] (z+20)

k=1

Sol:




Uniqueness of Power Series

Theorem

Let the power series ag + a1z + azz2 + - and by + bz + bzzz + --- both be
convergent for |z| < R, where R is positive, and let them both have the same sum
for all these z. Then the series are identical, that is, ag = by, ay = by, as = ba, - -+

Hence if a function f(2) can be represented by a power series with any center 2,
this representation is unigque.

Proof:
FRREEME RAT Complex Analysis: Unit-3 25
Term-by-Term Differentiation of Power Series
Theorem
A power series Y7 ap(z — 20)® can be differentiated term by term
within its circle of convergence |z — zp| = R.
Proof:
Differentiating a power series term-by-term gives,
d
d.*lzak z—zn Zr};i z—zn Zakﬂ(z—z(])k !
" k=0
Note that the summation index in the last series starts with & = 1 because
the term corresponding to k = 0 is zero. It is readily proved by the ratio test
that the original series and the differentiated series,
o0 o0
Z ap(z — ::n}jc and Z apk(z — z“)*‘_l
k=0 k=1
have the same circle of convergence |z — zg| = R. Since the derivative of
a power series is another power series, the first series » )~ ag(z — z9)" can
be differentiated as many times as we wish. In other words, it follows that,
a power series defines an infinitely differentiable function within its circle of
convergence and each differentiated series has the same radius of convergence R
as the original power series.
PR REEMA RAT Complex Analysis: Unit-3 26




Integration of Power Series

Theorem _
A power series Y7 ap(z — zn)"' can be integrated term-by-term within

its circle of convergence |z — zp| = R, for every contour C lying entirely
within the circle of convergence.

Proof:
The theorem states that

/Zuk{b 20 dz—Zak/ (z—zn dz
oy — C

whenever €' lies in the interior of | z — zp| = R. Indefinite integration can also

be carried out term by term:

(= o] e
/ZM{Z - LQ}AEEL = ka /{4. — zp)%dz
k=0 k=0

)
Q. .
= E (z — z0)* ™! + constant.

The ratio test can be used to l}e prove that both
=
: Lk; .
E ap(z — z)" and ﬁ(z — zp)kt!
o= k=0 T
have the same circle of convergence | z — zp| = R

FRREEME RAT Complex Analysis: Unit-3 27

Multiplication of Power Series (Cauchy Product)
Suppose that each of the power series

.
Zan(z—zo)" and an —z0)"
n=0

converges within some circle |z — zg| = R. Their sums f(z) and g(z), respectively,
are then analytic functions in the disk |z —zg| < R, and the product of those sums
is valid there: ~o
f@g@) =) calz—z20"  (z—20 < R).
n=0

Proof: ,
co = f(z0)g(zo0) = agby,

(7 "z Mza)e(r
IAEOTIC : fC8E) _
_ f(20)8"(z0) + 2f"(z0)¢" (z0) + f"(z0)g(20)

B 2!
The general expression for any coefficient ¢, is easily obtained

n ’ |
[f(2)g(z ](”)—Z( )j“)( ") (mn=1,2,...), where (I)Zﬁ

= agby + ay1by + azby.

n

k=0
J‘U‘)( 0) L’(" ) (z0)
» Cp = Z ,{)' —Z”kbn—k;

k=0
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Example: Find the power series of ¢°/(1 + z) in the open disk |z| < 1.
Sol:

FRREEBME FAT Complex Analysis: Unit-3 29

Division of Power Series

Suppose that each of the power series

o0 00
(1) Z an(z —z0)" and Z bn(z —20)"
n=0

n=>0
converges within some circle |7 — 79| = R.
Continuing to let f(z) and g(z) denote the sums of series (1), suppose that

¢(z) # 0 when |z — zg| < R. Since the quotient f(z)/g(z) is analytic throughout
the disk |z — zo| < R, it has a power series representation

[+
—— =) diz—20)"  (z—z0l <R).
gz =

where the coefficients d, can be found by differentiating f(z)/g(z) successively
and evaluating the derivatives at z = z9. The results are the same as those found
by formally carrying out the division of the first of series (1) by the second.

P REEMA RRT Complex Analysis: Unit-3 30




Example: Find the power series of

1
z¢sinhz 0 <zl <7
Sol:
FRREEBME FAT Complex Analysis: Unit-3 31
Taylor’s Theorem
Theorem

Let [ be analytic within a domain D and let zp be a point in D. Then f
has the series representation

valid for the largest circle C' with center at zp and radius R that lies
entirely within .

Proof:

FRREEBME FAT Complex Analysis: Unit-3 32
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Proof of |R«(z)] —0 as n— o0

Proof of |R:(z)| -0 as n—o0:

FRREEBME FAT Complex Analysis: Unit-3 34




Maclaurin Series

Definition: A Taylor series with center z; = 0,

o ey,
IEEDIEE= S s

o
k=0

is referred to as a Maclaurin series.

Some Important Maclaurin Series

2 <k
. z oz z
e =1+F+§+=ZF
le=0
z3 25 2 L sz-i—l
sinz=2— — 4+ — —--- = 1) —
31 " 5] kz_n{ ) @R
22 Z‘L = s 22!;
cosz:l—§+z—---=2(—l) @)
k=0
Example: Find the Maclaurin series of tan z.
Sol:
FRREEBME FAT Complex Analysis: Unit-3 35

Radius of Convergence for a Taylor Series

* We can find the radius of convergence of a Taylor series in exactly with the ratio
test or the root test.

* However, we can simplify matters even further by noting that the radius of
convergence R is the distance from the center zo of the series to the nearest
isolated singularity of f.

Remark: An isolated singularity is a point at which ffails to be analytic but is,
nonetheless, analytic at all other points throughout some neighborhood of the
point.

Example: _
Suppose the function f(z) = L is expanded in a Taylor series with

<

center zg = 4 — 2i. What is its radius of convergence R7

Solution

FRREEBME FAT Complex Analysis: Unit-3 36




Theoretical Method for Taylor Series

EX 1: Find the Maclaurin expansion of f(z) = 1/(1 — z).
Sol:

EX 2: Find the Maclaurin expansion of ¢° .
Sol:

EX 3: Find the Maclaurin expansion of sinz,

Sol:

FohREEMA RAF Complex Analysis: Unit-3 37
EX 4: Find the Maclaurin expansion of sinh z

Sol:

EX 5: Find the Maclaurin expansion of Ln(1+z).

Sol:

o REEMA RAF Complex Analysis: Unit-3 38




Substitution Method (Uniqueness of Power Series) for Taylor Series

EX 1: Find the Maclaurin expansion of f(z) = 1/(1 + z%).
Sol:

EX 2: Find the Maclaurin expansion of fiz) = arctan z.

Sol:

: , . . 1+ 27
EX 3: Find the Maclaurin expansion of /(z) = — g
Sol: ‘ S

P KRN A BAT Complex Analysis: Unit-3 39

EX 4: Find the Maclaurin expansion of f(z) = T
Sol:

Z.'%

Note: Maclaurin expansion of f(z) = a7

— =284 22 325 4

.3 oo
(1:—3} - Z L 25+2  the radius of convergence R = 1.
k=1

FRREEBME FAT Complex Analysis: Unit-3
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EX 5: Expand f(z) =
Sol:

1

Remark: Checking the radius of convergence with the root test,

in a Taylor series with center zy = 24.

R=

1
lim,[ 1
.

"7H=|1—2i|=\/§

=lim |1 - 2i

n—>0

n+l

FRREEBME FAT Complex Analysis: Unit-3 41
3—i . . :

EX 6: Expand f(z) = Ty, na Taylor series with center zp = 4 — 2i.
—itz

Sol:

FRREEBME FAT Complex Analysis: Unit-3 42




EX 7: Find the Taylor series and its convergence region of the following function with

centerz, =1.
222 +9z+5

Z)=
/@) 22 4+z2-8z-12

Sol:

43

Complex Analysis: Unit-3
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Laurent Series

Motivation

If a function f(z) fails to be analytic at a point z,, one cannot apply Taylor’s theorem
at that point. Laurent series generalize Taylor series to find a series representation for f(z)

involving both positive and negative powers of z — z,.
is not analytic at the isolated singularity z = () and

Example
- . » sin z
The function f(z) —
hence cannot be expanded in a Maclaurin series. However, sin z is an entire

9

.3

function, we know that its Maclaurin series,
2 22 2z

17 R — — —

sinz =z 30 + Al =

Tor
converges for |z| < co. By dividing this power series by z* we obtain a series

for [ with negative and positive integer powers of z:
analytic

principal
part part
. e e P =
sin z 1 z 23 z°
B TR T

Mz = — 3 T
<

The analytic part of the series converges for |z
valid for |z| = 0. Thus f(z) converges for all z except at z = 0; that is, the series

1
==

oo. The principal part is

< 0.

-
E

representation is valid for 0 <
Complex Analysis: Unit-3
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Theorem.

closed contour around zo and lying in that domain. Then, at each point in the

Laurent’s Theorem

Suppose that a function f is analytic throughout an annular domain
Ri1 < |z — 20| < Ry, centered at zq , and let C denote any positively oriented simple

domain, f(z) has the series representation

oo [e.4] b
f@) =) az—20)"+Y —— (R <|z—2| < Ra),
n=0 n=1 (Z o ZO)
where
1 f(z)dz
ap = " n:D,l,Z,...
2 jC" (Z _ZO)H+1 ( )
and
1 (z) d
= f f(z) dz i n=12..).
2rti Jo (z —zo)™"F

FRREFBMA RRF
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Proof:

FRREBMA RRF

Proof of Laurent’s Series

Complex Analysis: Unit-3
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Theoretical Method

Example: Find the power series of f(z)=e/z*, |z[>0.
Sol:

FRREEBME FAT Complex Analysis: Unit-3 49

Substitution Method

Although f(z)= e’/ is analytic for |z|>0, but is not analytic at z=0. Thus, the
Maclaurin series does not exist from the theoretical method.

However, ¢° for |z|>0 has the Maclaurin series as

From uniqueness of power series, the representation of eZ/Z3 in power series can be
obtained as

1 ., 1 1 1 1 z Zz
f@) ==

=SSt —+—+
z z> z 21z 31 41 5!

For all z such that |z|>0.
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EX 1: Find the Laurent series of z2¢"* with center 0.

Sol:

EX: Find the Laurent series that represents the function

1
flz)=1z° sin(?)

i 1
Ans. l+Z(2”+1 34”.

in the domain 0 < |z| < 00.
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EX 2: Find the Laurent series of 1/(1-z) for (a) |z|<1 (b) |z[>1.

Sol:

EX 3: Find the Laurent series of 1/(z° —z%).

Sol:

PR RREMA RRTF Complex Analysis: Unit-3 52




_ . -2z43
EX 4: Find the Laurent series of f(z)=

22 =3z+2°
Sol:
FohREEMA RAF Complex Analysis: Unit-3 53
. . 3
EX 5: Find the Laurent series of [f(z)=——.
2+z—z
Sol:
o REEMA RAF Complex Analysis: Unit-3 54




EX 6: Find the Laurent series of f(z)= 2; in the region of 0<|z—1]< 2.
Sol: z"°—4z+3

FohREEMA RAF Complex Analysis: Unit-3 55
. . 22 =2z+3 . .
EX 7: Find the Laurent series of f(z)==——="" in the region of [z—1[>1.
-2
Sol:
o REEMA RAF Complex Analysis: Unit-3 56




