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Zero of Order n

Definition
A number zo is zero of a function fif f{zo) = 0. We say that an analytic function f'has a
zero of order n at z = zo if

zn is a zero of f and of its first n—1 derivatives
e

flz0) =0, f(20)=0, f"(20) =0, ..., f" Y (z) =0, but f"(z0) # 0.

A zero of order n is also referred to as a zero of multiplicity ».

Theorem

A function f that is analytic in some disk |z — zp| < & has a zero of order
n at z = zp if and only if f can be written

f(z) = (2 — z0)"¢(2),

where ¢ is analytic at z = zy and ¢(z) # 0.
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EX: Determine the order of zero at z=0.

f(z)=2zsinz’

Sol:
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Pole of Order n

Theorem

A function f analytic in a punctured disk 0 < |z — zy| < R has a pole of
order n at z = zp if and only if f can be written

(.__'—’ = )—\3
16) =

where ¢ is analytic at z = zp and ¢(zy) # 0.

Corollary
If the functions g and h are analytic at z = z5 and A has a zero of order

n at z = zg and g(zp) # 0, then the function f(z) = g(2)/h(z) has a pole
of order n at z = zp.
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EX 1: Locate the poles of g(z) = and specify their order.

5z +26z*+5

Sol:
t . .
EX 2: Locate the poles of g(z) =%§”Z) and specify their order.
Sol:
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Residue
Definition

If Az) has a singularity at z=zo inside C but is otherwise analytic on C and inside C.
Then f(z) has a Laurent series

ad b b
@O = ayz— 2" + ——— F ——y -

I S .2
ne0 z— 20 (22— z0)

that converges for all points near z=zo, in some domain 0<|z-zo|<R.

The coefficient b1 is called the residue of f{z) at z=z0. Recall that

b= L, -2
27wi v ¢

(Z _ ZO )7n+1

we have
1
b=~ )k

=Res f(2)

Z=ZO
Note: also notation as b; = Res[f(2), zo].
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EX 1: Integrate f(z) =z * sinz counterclockwise around the unit circle.
Sol:

EX 2: Integrate f(z) =
Sol:

+ Clockwise around the circle C Jz|= l
2

3
z —Z

EX 3: Integrate f(z) = ze** counterclockwise around the circle C:|z|=4.
Sol:
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Residue at a Simple Pole
Theorem

If f has a simple pole at z = zy, then

Res(f(z),z0) = 5121;'(2 —zn)f(z).
Proof:
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Residue at a Pole of Order »

Theorem

If f has a pole of order n at z = zp, then

v 1 . g nd T
Res(f(z), z0) = o) zh_t:tg] W(z — zg)" f(2)-
Proof:
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EX 1: Compute the residues at the singularities of
(2) = 1
A P )
Sol:
EX 2: Compute the residues at the singularities of
COSzZ
Z)=—F—=.
/() ZGn)
Sol:
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Residue at a Simple Pole

Theorem

Suppose a function f{z) can be written as a quotient f{z) = p(z)/q(z), where p(z) and ¢(z) are
analytic at z = zo . If p(z0)#0 and if the function g(z) has a simple zero at zo , then f(z) has a
simple pole at z = zo and

Res f(z) =Res pz) _ p(z)

= () 4G
Proof:
9z +i .
Example: f(z) = — e Find Res f(z).
z z =i
Ans: -5i.
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EX 1: Compute the residue at each singularity of f(z) =cotz
Sol:

EX 2: : Compute the residue at each singularity of f(z)=
Sol:

zt 1
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Cauchy’s Residue Theorem

Theorem

Let I be a simply connected domain and € a simple closed contour lying
entirely within D. If a function f is analytic on and within C, except at
a finite number of isolated singular points zy, 2s, ..., 2, within C, then

jﬁ_ J(z)dz = 2wy Res (f(z), zx)-
SO el

Proof:
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dz, where the contour C is the circle |z — | = 2.

2 6
EX 1: Evaluate )g f+ :

Jo 2244
Sol:

= 2.

z

EX 2: Evaluate 1 — dz, where the contour ' is the circle
Jo 2t 4+ 523
Sol:
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EX 3: Evaluate }g tan z dz, where the contour (' is the circle |z| = 2.
Je
Sol:

tan . .
EX 4: Evaluate cJSC . Zldz in the counterclockwise sense where C:|z|= %
Z —
Sol:
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EX 5: Evaluate ¢ £ 5_1 dz in the counterclockwise sense where C is the unit circle.
C
Sol: z
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Trigonometric Integration

Consider the following integrals

2m
f F(sinf, cos®)df
0

The basic idea here is to convert the real trigonometric integral into a complex integral, where
the contour C is the unit circle |z| = 1 centered at the origin.

i0 Y
Let z=¢ (0<6 <?2nm)
Z=€’.g
Iz - 1z C
L=z do=—
do iz
id —if —1 7
el —e 7 — 7
ing = 1= 7 ("
sinf = = _
2i 2i
el 4o o4 o]
cosf = =
2 2
We have that
o z—zV 7242771\ dz
F(sin@, cosf)do :fF( —, )—
0 c 2i 2 iz
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deo

EX 1: Evaluate j:ﬁﬂ.
— COS

Sol:

. 2m de
Exercise: Evaluate f e
0 54+ 4sin@
Ans: 2_”
3
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do

EX 2: EvaluateJ' e s
+3C0S

Sol:
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Improper Integral

Def: Improper integral f(x) over [0, o) is defined by

/ flx)dx = llm/ f(z)dz.
Jo :

provided that the limit exists. Similarly,

0 0
/ f(a)dr = lim / f(x)dax.
J—oc R—>J_p

If f(x) iscontinuous on (—o0, ), then

X 0 X
/ f(z)dz = / f(x)dr + / f(a)dz
J —ox J = JO

provided both integrals are convergent (limit exists).

Note: If fjow f(x) converges,

v R
/ f(z)de= lim / f(a)dax.
—oc R—oo J_R

However, the symmetric limit may exists even though the improper integral
% f(x) is divergent.
—00

Ex:
>C ; A R 5 R 3 ¢
f—,\ xdx is divergent since limp_. fo cdr=Mp . %1{2 = 00.
R
: 2 2
lim rdr = lim 7[[? (—R)“] =0.
R— \. R R—oc ._.
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Cauchy Principal Value

Let f (x) be a continuous real-valued function for all z. The Cauchy prin-
cipal value (P.V.) of the integral ffcw f(z)dz is defined by

P.V. /_Zf( )dx = llm / [z

provided the limit exists.

Example: Find PV. | b

—.
Sol: ¥l
el 1 -R. l
P.V. / = dr = lim = dx
Vi G T R—oo | _pa?+1
= lim [Arctan R — Arctan (—R)]
=B g
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Cauchy Principal Value of the Integral of Rational Functions
Theorem
Let f(z)= QE ; where P and Q are polynomials of degree m and n, respectively. If O(x) =0
for all real x and »n>m+2, then
= P(x £
pv. 720 4 27i) Res f(2)
= O(x) =
where z,,z,,-+-,z, are the poles of f(2) that lie in the upper half-plane.
Proof-
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o dx
EX 1: Evaluate P.V. [ ——————
= (x"+1)(x" +4)
Sol:
©  dx
EX 2: Evaluate P.V-I — .
= (x"+4)
Sol:
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Jordan’s Lemma in Upper Half-Plane

Theorem

Suppose that P and Q are polynomials of degree m and n, respectively, where

n =>m + 1. If Cy is the upper semicircle z = Re'® for 0 < 8 < m, then for a >
0,

lim etaz @dz =0

R>ow 'CR Q(2)
Proof:
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Jordan’s Lemma in Lower Half-Plane

Theorem
Suppose that P and Q are polynomials of degree m and n, respectively, where n =
m + 1. If Cgis the lower semicircle z = Re'? for—m< 0 <0, then fora > 0,

. —iaz P(2)
A e oa 42 =0
Proof:
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Fourier Integrals
Corollary
Let P and Q are polynomials of degree m and n, respectively. If O(x) = Ofor all real x
and n=m+1 then
V. Iw @ei“xdx: 2mZRe{ Pz) ’“2}
= Q(x) = = [ 0(2)
That is,
P.V. Uw ix)cos(a'x)a’x+ ijm Msin(ocx)a’x}
= 0(x) = Q(x)
K
=2 Re{ZRes{ P@) ”“}}+ilm{ZRes{@em}}
11 9(2) = = [ 0(2)
We have
P.V. J‘Oc Px )cos(ax)dx——2ﬂZIm{Res{ P(z) e }}
= 0(x) o)
V. jw Plx )sm(ax)dx 27ZZRC{RCS|: Pz) "”}
= 0(x) = | O(z2)
where a >0 and z,,z,,"**,Zx are the poles of P(z)/ Q(z) that lie in the upper half-plane.
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» xsinx

EX 1: Evaluate P.V. ——dx.
= x"+1
Sol:
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EX 4: Evaluate P.V. [ COS)_Cdx :
= X+i
Sol:
(Method #1)
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(Method #2)

Note, in this example,
00 Hht
% cosx e
dx # Re p.v. f ——dx ,
p.v. -oox'i‘f. x# p 40G-‘+"
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Improper Integrals
Definition

Suppose tq, ty, -, t; are discontinuous points on the x-axis for f(x), then
L+1

P.V. fof(x)dx = Jim > f’_E F)dx

€0 j=1"t-1t€

where t, = —R and t;,; = R.

4 d
Example: Evaluate P.V. fl xsz
Sol:

jg—r dx 1 f4 dx L x=2d~r ) =4
1ox=2 fuex-2 og[l—mlx:l +Loglx - lx=2+!’

=Logr-Logl+Log2—Logr
=Log2.
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Integral of Indented Contour

Theorem
If Az) has a simple pole at z=a on the real axis, then c,
lim [ f(z)dz =miRes f(2)
r—0 JG, z=a
a—r o a+r x
Proof:
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Integral of Indented Contour of Rational Functions
Theorem
Let f(z)= QE ; where P and O are polynomials of degree m and n, respectively, and 7 = m+ 2.
If O(x)#0 and has simple zeros at the points t4, t,, -, t; on the x-axis, then
© P(x
P.V. Lo 2mZRes f(z)+mZRes f(2)
= Q(x) Y
where Z,2,,"",Zx are the poles of f(z) that lie in the upper half-plane.
Proof:
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dx

P.V.
EX 1: Evaluate . (x —3x+2)(x* +1)°

Sol:
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Integral of Indented Contour of Rational Functions
Corollary
Let f(z)= QE ; where P and O are polynomials of degree m and n, respectively, and 7 = m+ 2.
If O(x)#0 and has simple zeros at the points t4, t,, -, t; on the x-axis, then
o P(x
P.V. (x) ——dx= —27r12Resf(z) mZResf(z)
= 0(x) Y
where 7,,7,,"**,7¢ are the poles of f(z) that lie in the lower half-plane.
Ay
0 *b\ -tl. g
> B—r2 7 P
) \-)/TL
L
o b
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Fourier Integral of Indented Contour of Rational Functions

Corollary

Let f(z)= % , Where P and Q are polynomials of degree m and »n, 72 = 2 + 1, respectively.
z
Let O(x)#0 and have simple zeros at the points £, t5, :++, t; on the x-axis. If «is a positive

real number, then

AV i)C)e""xcl>c = Zﬂii Res f(z)e™ + m‘i Res f(z)e™*
= Q(x) I= =
That is,
V. f;%cos(ax)dx = —27[}21:4 Im[l}j,s f( Z)efm} _ ﬂg‘ Im[l}js £( Z)eiazj|
P.V. Iw ggx; sin(ax)dx = 27Z'i Re[Res f (z)e’“} +7ri Re[Res f (z)e’m}
-0 x = z=z, = z=t;

where z,,z,,---,z, are the poles of f(z) that lie in the upper half-plane.
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» xein

o x? -1

EX 1: Evaluate p.v.
Sol:

dx .
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EX 2: Evaluate p.v. [* — 5% 0.
= x(x* —2x+2)
Sol:
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Integration Along a Branch Cut

Motivation: Since the integration involving z“is a multiple-valued function, we can
force z” to be single valued for z =re” by restricting 0 to some interval of length 2.

We use the branch of the logarithm log,as

Za :ealnz :ea(lnr-m?)

where z£0 and 0 < 8 <2 is a branch of z*“.

Theorem
Let 7(2) =%, where P and Q are polynomials of degree m and n, respectively,
4
and n=2m+2_If O(x)#0 for x>0 and Q(x) has a zero of order at most 1 at the origin,

and O<a<l, then

= x” P(x) 27 «
v. | XQT))Cdx:I_e%;l}:es (7(2)

where z,z,,---,z, are the nonzero poles of f(2).

J
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Proof:
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Complex Analysis: Unit-4
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EX 1: Evaluate PV, mlx;dx, O<a<l.

Sol:
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EX 3: Evaluate P.V. .[:

Sol:

FRARZEMA RRT

dx, O<a<l.
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. o x* (l-a)x
EX 5: Evaluate P.V. ——dx = . , —l<a<3
"D 4cos[0mj
2
Sol:
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Argument Principle

Theorem

Let C be a simple closed contour lying entirely within a domain D. Suppose f is
analytic in D except at a finite number of poles inside C, and that f(z) =0 on C.
Then

g /'@, _,
T e R

where Z , is the number of zeros of fthat lie inside C and P, is the number of poles
of f that lie inside C. '

Proof:
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EX 1: Evaluate (ﬁcf'(z)/f(z)dz where C:|z|=4 is positively oriented.

(z—-8)*2

1O = S sy

Sol:

EX: Evaluate Cﬁ f(2)/ f(z)dz Where C:|z |:% is positively oriented.
C
(z—3iz-2)°

f(2)=
2(z* =2z+2)
Ans: —187i
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Laplace Transform
Definition

Let f(r) be a real function and s be a complex variable. The Laplace transform of f{7)
is defined as

F(s) = jo‘” e £(t)dt

and is denoted as & {f(1)}. The corresponding inverse pairis f({) = & ' {F(s)}.

Example
The Laplace transform of f(f) =1,¢ > 0 is

o0 b
L1} = / e "(1)dt = lim | e “'dt
Jo

b—ocjp

— st b

— 1—e st
= lim ———. (7
b—oa S

o
—

= lim
b—oo s

0
If s is a complex variable, s = x + iy, then recall

e—sb _ E_b:I:(COS b“y + 4 sin by) ((’)

From (6) we see in (5) that e=** — 0 as b — oo if > 0. In other words, (5)
1
gives £ {1} = —, provided Re(s) > 0.
s
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Exponential Order ¢

Definition

A function £ is said to be exponential order c if there exist constants ¢>0, (>0,
and 7>0 so that | f(¢) |< Me”, for >T.

Remark 1: ¢ | f(¢)] is bounded; thatis, ¢ | f(¢)|< M for T

Remark 2: The condition | f(?) |< Me“for r>T states that the graph of fon the
interval (7',c0) does not grow faster than the graph of the exponential
function Me“ .

y Mect(c > 0)
f(H)
|
pe— |
' t
T
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Sufficient Conditions for Existence of Laplace Transform

Theorem
Suppose f is piecewise continuous on [0, co) and of exponential order ¢
for t > T. Then L {f(t)} exists for Re(s) > c.

Proof:
T oo
Fif)) = / e SUf(t)dt +/ e St f(t)dt = I, + L.

T

The integral I, exists since it can be written as a sum of integrals over intervals
on which %! f(t) is continuous.

To prove the existence of Iy, we let s be a complex variable s = = + #y.

le=st| = |e~*t(cosyt —isinyt)| =e " and | f(t)| < Me*, t > T,
s =]

I < / [estf(t)| dt < M/ e et dt
JT JT

oo 8—(:}3—(3)T

=M
r—c

00 —(z—c)t
- M/ eE=tgy — _p&
JT xr —c

T
for = Re(s) > c.

Since [ Me~(“=9)'dt converges, thisimplies that I exists for Re(s) > c.
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Table of Laplace Transform
(@ L} = ﬁ [Re(s) > Re(a)] (xiii) L {F(t)e™9} (s) = L{F}(s +a)

(i) L{1} =L {e"} = % [Re(s) > 0] (xiv) L{aF(t) + bH (@)} = aL{F (1)} + bL{H (1)}

(i) L{coswr) =Rel [’} = = j_wz [w real, Re(s) > 0]

. N _ iwf) w

(iv) Lisinwt} =ImL {el*'} = p [w real, Re(s) > 0]

(v) L{coshwr} = Licosiwt} = ye j = [ real, Re(s) > |@l]

(vi) Lisinhor) = L{—isinior} = sz—_“iﬁ [ real, Re(s) > |e|]

(vii) L {e™ coswt} = Re L {e-AH)N} = -M—sk;-)l%—z

[w, A real, Re(s) > —A] Proof of Laplace Transform Pairs:
3 - : w 00
(Viii) L {e"‘t SIHOJE] =ImkL {e( A‘HOJ)"} = m L {F(t)e—a!} (S) = f F(t)e-—ate—-st dt
[ew, A, real, Re(s) > —A] 000 o
7 = F(t)e 19" dr = L{F}(s + a).
(ix) L {rme”} = (-s—}:yﬁ [Re(s) > Re(a)] fo @)e {F}(s +a)
n!
x) L{"} = _— [Re(s) > 0]
8
) s?— ?
(xi) L{tcoswr) = ReLl {re!®'} = (2+—2)2- [w real, Re(s) > 0]
5 @
: 2
(xil) L{tsinwr} = ImL {telr} = (TS‘"—Z)E [w real, Re(s) > 0]
S+ w
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Laplace Transform of Time-Shift Functions

Definition

The unit step function or Heaviside function u(r — a) is O for 1 << a, has a jump of size
1 at t = a (where we can leave it undefined), and is 1 for r > a. in a formula:

ult)

0 ifr<a wemw
u(t — a) = I 1 E—
1 ifr > a I
|
(a = O) 0 t 0 LI1 t
Unit step function u(t) Unit step function u(t — a)
= = —st| = —as
—st —st e €
Ef{u(r—a)}=J e u(r—a)dr=J e - 1dt=— ; = (s >0)
o o E t—a A

Laplace Transform of Time-Shift Functions
If L{f(0)} = F(s), then L{f(t — a)u(t — a)} = e~ “F(s).

Proof:
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Laplace Transform of the Derivative and Integral

- Laplace Transform of the Derivative:
By looking at the transform of the derivative F’(t),

o
L{F}@) = f e F' () dt
0

o0 oo
= _ f (—s)e S F(f)dt + e ' F(2)
0 0

assuming thate ™' F(t) = Qast — oo,
L{F'} (s) = sL{F}(s) — F(0).
Iterating this equation results in
L{F"}(s) = sL{F'} (s) — F'(0)

= s2L{F}(s) — sF(0) — F'(0),
and, in general,

L {F(k)] (s) = SkL{F}(J') _ Sk—lF(O) _ sk—ZFf(U) . F(k—l)(O)_

- Laplace Transform of Integral:

t 1 Proof:
Ef{ jf(’r) d’r} = S F(s) t
0 ‘ g(r)=Jf(*r)d7,g'(r) = f(1), g(0) =0
0
LU0} = £{g' 1) = sL{g) — g0) = sL{g®)).
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Ex 1: Find the current i(7) in the RC-circuit if a single rectangular wave with
voltage Vg is applied.
c .
L vit)
1
Q
vfr:) Vo
)\{\QA’ 0 a b Tt
Solution:
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EX 2: Find the function f(¢) that satisfies

d*f(t) . _df(®) .
7y +2 7 + f(z) =sint

for ¢ > 0 and which at # = 0 has the properties £(0) = 1, f/(0) = 0.

Sol:

|
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Inverse Laplace Transform

Theorem (Mellin’s Inverse Formula)

If f and f' are piecewise continuous on [0, oco) and f is of exponential
order ¢ for t > 0, and F'(s) is a Laplace transform, then the inverse
Laplace transform & ~1{F(s)} is

y+iR
f) =L HF(s)} = ,)1 - lim / e*' F(s) ds,

where v > ¢. Suppose F(s) has a finite number of poles

81, 82, ... , Sy to the left of the vertical line Re(s) = v and

sF'(s) is bounded as R — oo, then

PHF(s)} =D Res (X' F(s), s1).

k=1
Remark:

The fact that F(s) has singularities s, s2, . . . , 8, to the left of the line
x = v makes it possible for us to evaluate & ~'{F(s)} by using an appropriate
closed contour encircling the singularities.
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Proof:
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1

EX 1: Evaluate & —1{_‘5}’ Re(s) > 0.
s

Sol:

Note: & {t"} =n!/s"*!
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2s
[
EX 2: Evaluate & —! : , Re(s) > 3.
e e T
Sol:
Note:
e _écr‘-—2 + %[3:;(!.—2)7 t>2 unit step function
o 1, t>
0, t < 2. WUt — a) = >a
. i 0, t<a
= — 52Ut — 2) + 22Tt - 2),
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EX 3: Find the piecewise smooth function with Laplace transform 1/(s* — 1) .
Sol:
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Definition of Fourier Transform and Inverse Fourier Transform

Definition

Let f(7) be a real function defined on the interval (—o0,00) and @ is a real variable.

The Fourier Transform of f{7) is defined as
e y
F(w)=— j () e dt
27 9=
and the inverse Fourier Transform is

fO =] F(w) ¢"do
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Fourier Transform
Example: Find the Fourier transform of f(t)=e™". 1)
Sol: !
t
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Fourier Transform of the Derivative

Theorem

Let f(x) be continuous on the x-axis and f(x) — 0 as |x| — oo, Furthermore, let f"(x)
be absolutely integrable on the x-axis. Then

F{f 0} = iwF {f(x)}.

Proof:
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Inverse Fourier Transform
. . . 1
Ex1: Find the inverse Fourier transform of F(w) :ﬁ .
7(l+w
Sol:
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EX2: Find the Fourier transform of the function and confirm the inversion formula.

sinr, |t| <6m,
0, otherwise

F() =[

Sol:

P RZEMA RRF Complex Analysis: Unit-4 69

Ex3: Find a function that satisfies the differential equation

d’ f(t) +2df(t)
dr’ dt

I, |tik1

0, otherwise

=3f() ={
Sol:
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Numerical Validation for Ex3:

df(t)/dt

f(t
0 (®
-0.1
-0.2
-0.3 : '
-10 -5 0
t
d?f(t)/dt?

5 -10 -5 0 5
t

d2f(t)/dt2+2df(t)/dt-3f(t)

057
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