Unit-4 Residue Integration

張大中 中央大學 通訊工程系 dcchang@ce.ncu.edu.tw

Zero of Order n

Definition

A number z_0 is zero of a function f if $f(z_0) = 0$. We say that an analytic function f has a zero of order n at $z = z_0$ if

$$f(z_0) = 0, f'(z_0) = 0, f''(z_0) = 0, \dots, f^{(n-1)}(z_0) = 0, \text{ but } f^{(n)}(z_0) \neq 0.$$

A zero of order n is also referred to as a zero of multiplicity n.

Theorem

A function f that is analytic in some disk $|z - z_0| < R$ has a zero of order n at $z = z_0$ if and only if f can be written

$$f(z) = (z - z_0)^n \phi(z),$$

where ϕ is analytic at $z = z_0$ and $\phi(z_0) \neq 0$.

EX: Determine the order of zero at z=0.

$$f(z) = z \sin z^2$$

Pole of Order n

Theorem

A function f analytic in a punctured disk $0 < |z - z_0| < R$ has a pole of order n at $z = z_0$ if and only if f can be written

$$f(z) = \frac{\phi(z)}{(z - z_0)^n},$$

where ϕ is analytic at $z=z_0$ and $\phi(z_0)\neq 0$.

Corollary

If the functions g and h are analytic at $z = z_0$ and h has a zero of order n at $z = z_0$ and $g(z_0) \neq 0$, then the function f(z) = g(z)/h(z) has a pole of order n at $z = z_0$.

EX 1: Locate the poles of $g(z) = \frac{1}{5z^4 + 26z^2 + 5}$ and specify their order.

Sol:

EX 2: Locate the poles of $g(z) = \frac{\pi \cot(\pi z)}{z^2}$ and specify their order.

Residue

Definition

If f(z) has a singularity at $z=z_0$ inside C but is otherwise analytic on C and inside C. Then f(z) has a Laurent series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0} + \frac{b_2}{(z - z_0)^2} + \cdots$$

that converges for all points near $z=z_0$, in some domain $0<|z-z_0|< R$.

The coefficient b_1 is called the **residue** of f(z) at $z=z_0$. Recall that

$$b_n = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{-n+1}} dz, \quad n = 1, 2, 3, \dots$$

we have

$$b_1 = \frac{1}{2\pi i} \oint_C f(z) dz$$
$$= \mathop{\rm Res}_{z=z_0} f(z)$$

Note: also notation as $b_1 = Res[f(z), z_0]$.

EX 1: Integrate $f(z) = z^{-4} \sin z$ counterclockwise around the unit circle.

Sol:

EX 2: Integrate $f(z) = \frac{1}{z^3 - z^4}$ clockwise around the circle $C: |z| = \frac{1}{2}$. **Sol:**

EX 3: Integrate $f(z) = ze^{3/z}$ counterclockwise around the circle C: |z| = 4.

Residue at a Simple Pole

Theorem

If f has a simple pole at $z = z_0$, then

Res
$$(f(z), z_0) = \lim_{z \to z_0} (z - z_0) f(z).$$

Residue at a Pole of Order n

Theorem

If f has a pole of order n at $z = z_0$, then

$$\operatorname{Res}(f(z), z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} (z - z_0)^n f(z).$$

EX 1: Compute the residues at the singularities of

$$f(z) = \frac{1}{(z-1)^2(z-3)}$$

Sol:

EX 2: Compute the residues at the singularities of

$$f(z) = \frac{\cos z}{z^2 (z - \pi)^3}.$$

Residue at a Simple Pole

Theorem

Suppose a function f(z) can be written as a quotient f(z) = p(z)/q(z), where p(z) and q(z) are analytic at $z = z_0$. If $p(z_0) \neq 0$ and if the function q(z) has a simple zero at z_0 , then f(z) has a simple pole at $z = z_0$ and

Res_{z=z₀}
$$f(z)$$
 = Res_{z=z₀} $\frac{p(z)}{q(z)}$ = $\frac{p(z_0)}{q'(z_0)}$

Example:
$$f(z) = \frac{9z+i}{z^3+z}$$
. Find $\underset{z=i}{\operatorname{Res}} f(z)$.

EX 1: Compute the residue at each singularity of $f(z) = \cot z$.

Sol:

EX 2: : Compute the residue at each singularity of $f(z) = \frac{1}{z^4 + 1}$. **Sol:**

Cauchy's Residue Theorem

Theorem

Let D be a simply connected domain and C a simple closed contour lying entirely within D. If a function f is analytic on and within C, except at a finite number of isolated singular points z_1, z_2, \ldots, z_n within C, then

$$\oint_C f(z) dz = 2\pi i \sum_{k=1}^n \text{Res}(f(z), z_k).$$

EX 1: Evaluate $\oint_C \frac{2z+6}{z^2+4} dz$, where the contour C is the circle |z-i|=2.

Sol:

EX 2: Evaluate $\oint_C \frac{e^z}{z^4 + 5z^3} dz$, where the contour C is the circle |z| = 2.

EX 3: Evaluate $\oint_C \tan z \, dz$, where the contour C is the circle |z| = 2. Sol:

EX 4: Evaluate $\oint_C \frac{\tan z}{z^2 - 1} dz$ in the counterclockwise sense where $C:|z| = \frac{3}{2}$. **Sol:**

EX 5: Evaluate $\oint_C \frac{e^z - 1}{z^5} dz$ in the counterclockwise sense where C is the unit circle.

Trigonometric Integration

Consider the following integrals

$$\int_0^{2\pi} F(\sin\theta,\cos\theta) \,d\theta$$

The basic idea here is to convert the real trigonometric integral into a complex integral, where the contour C is the unit circle |z| = 1 centered at the origin.

Let
$$z = e^{i\theta}$$
 $(0 \le \theta \le 2\pi)$
$$\frac{dz}{d\theta} = ie^{i\theta} = iz \qquad d\theta = \frac{dz}{iz}$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{z - z^{-1}}{2i}$$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{z + z^{-1}}{2}$$

We have that

$$\int_0^{2\pi} F(\sin\theta, \cos\theta) \, d\theta = \int_c F\left(\frac{z - z^{-1}}{2i}, \frac{z + z^{-1}}{2}\right) \frac{dz}{iz}$$

EX 1: Evaluate
$$\int_0^{2\pi} \frac{d\theta}{\sqrt{2} - \cos \theta}.$$

Exercise: Evaluate
$$\int_0^{2\pi} \frac{d\theta}{5 + 4\sin\theta}.$$

Ans:
$$\frac{2\pi}{3}$$
.

EX 2: Evaluate $\int_0^{2\pi} \frac{d\theta}{1 + 3\cos^2\theta}.$ **Sol:**

Improper Integral

Def: Improper integral f(x) over $[0, \infty)$ is defined by

$$\int_0^\infty f(x) \, dx = \lim_{R \to \infty} \int_0^R f(x) \, dx.$$

provided that the limit exists. Similarly,

$$\int_{-\infty}^{0} f(x) dx = \lim_{R \to \infty} \int_{-R}^{0} f(x) dx.$$

If f(x) is continuous on $(-\infty, \infty)$, then

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx$$

provided both integrals are convergent (limit exists).

Note: If $\int_{-\infty}^{\infty} f(x)$ converges,

$$\int_{-\infty}^{\infty} f(x) \, dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) \, dx.$$

However, the symmetric limit may exists even though the improper integral $\int_{-\infty}^{\infty} f(x)$ is divergent.

Ex:

$$\int_{-\infty}^{\infty} x \, dx$$
 is divergent since $\lim_{R \to \infty} \int_{0}^{R} x \, dx = \lim_{R \to \infty} \frac{1}{2} R^{2} = \infty$.

$$\lim_{R \to \infty} \int_{-R}^{R} x \, dx = \lim_{R \to \infty} \frac{1}{2} [R^2 - (-R)^2] = 0.$$

Cauchy Principal Value

Let f(x) be a continuous real-valued function for all x. The Cauchy principal value (P.V.) of the integral $\int_{-\infty}^{\infty} f(x) dx$ is defined by

P.V.
$$\int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx,$$

provided the limit exists.

Example: Find P.V. $\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1}$. Sol:

P.V.
$$\int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx = \lim_{R \to \infty} \int_{-R}^{R} \frac{1}{x^2 + 1} dx$$
$$= \lim_{R \to \infty} \left[\operatorname{Arctan} R - \operatorname{Arctan} (-R) \right]$$
$$= \frac{\pi}{2} - \frac{-\pi}{2} = \pi.$$

Cauchy Principal Value of the Integral of Rational Functions

Theorem

Let $f(z) = \frac{P(z)}{Q(z)}$, where P and Q are polynomials of degree m and n, respectively. If $Q(x) \neq 0$

for all real x and $n \ge m+2$, then

P.V.
$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx = 2\pi i \sum_{j=1}^{K} \operatorname{Res}_{z=z_{j}} f(z)$$

where z_1, z_2, \dots, z_K are the poles of f(z) that lie in the upper half-plane.

Proof.

EX 1: Evaluate P.V. $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}$.

Sol:

EX 2: Evaluate P.V. $\int_{-\infty}^{\infty} \frac{dx}{(x^2+4)^3}$.

Jordan's Lemma in Upper Half-Plane

Theorem

Suppose that P and Q are polynomials of degree m and n, respectively, where $n \geq m+1$. If C_R is the upper semicircle $z=Re^{i\theta}$ for $0\leq \theta \leq \pi$, then for $\alpha>0$,

$$\lim_{R \to \infty} \int_{C_R} e^{i\alpha z} \frac{P(z)}{Q(z)} dz = 0$$

Jordan's Lemma in Lower Half-Plane

Theorem

Suppose that P and Q are polynomials of degree m and n, respectively, where $n \ge m+1$. If C_R^- is the **lower** semicircle $z=Re^{i\theta}$ for $-\pi \le \theta \le 0$, then for $\alpha > 0$,

$$\lim_{R \to \infty} \int_{C_{\mathbf{R}}} e^{-i\alpha z} \frac{P(z)}{Q(z)} dz = 0$$

Fourier Integrals

Corollary

Let P and Q are polynomials of degree m and n, respectively. If $Q(x) \neq 0$ for all real x and $n \geq m+1$, then

P.V.
$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} e^{i\alpha x} dx = 2\pi i \sum_{j=1}^{K} \operatorname{Res}_{z=z_{j}} \left[\frac{P(z)}{Q(z)} e^{i\alpha z} \right]$$

That is,

P.V.
$$\left[\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \cos(\alpha x) dx + i \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \sin(\alpha x) dx\right]$$
$$= 2\pi i \left\{ \operatorname{Re} \left\{ \sum_{j=1}^{K} \operatorname{Res}_{z=z_{j}} \left[\frac{P(z)}{Q(z)} e^{i\alpha z} \right] \right\} + i \operatorname{Im} \left\{ \sum_{j=1}^{K} \operatorname{Res}_{z=z_{j}} \left[\frac{P(z)}{Q(z)} e^{i\alpha z} \right] \right\} \right\}$$

We have

P.V.
$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \cos(\alpha x) dx = -2\pi \sum_{j=1}^{K} \operatorname{Im} \left\{ \operatorname{Res}_{z=z_{j}} \left[\frac{P(z)}{Q(z)} e^{i\alpha z} \right] \right\}$$
P.V.
$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \sin(\alpha x) dx = 2\pi \sum_{j=1}^{K} \operatorname{Re} \left\{ \operatorname{Res}_{z=z_{j}} \left[\frac{P(z)}{Q(z)} e^{i\alpha z} \right] \right\}$$

where $\alpha > 0$ and z_1, z_2, \dots, z_K are the poles of P(z)/Q(z) that lie in the upper half-plane.

EX 1: Evaluate P.V. $\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 1} dx.$

EX 4: Evaluate P.V. $\int_{-\infty}^{\infty} \frac{\cos x}{x+i} dx$.

Sol:

(Method #1)

(Method #2)

Note, in this example,

p.v.
$$\int_{-\infty}^{\infty} \frac{\cos x}{x+i} dx \neq \text{Re p.v.} \int_{-\infty}^{\infty} \frac{e^{ix}}{x+i} dx$$
.

Improper Integrals

Definition

Suppose t_1, t_2, \dots, t_L are discontinuous points on the x-axis for f(x), then

$$P. V. \int_{-\infty}^{\infty} f(x) dx = \lim_{\substack{R \to \infty \\ \epsilon \to 0}} \sum_{j=1}^{L+1} \int_{t_{j-1} + \epsilon}^{t_j - \epsilon} f(x) dx$$

where $t_0 = -R$ and $t_{L+1} = R$.

Example: Evaluate P. V. $\int_{1}^{4} \frac{dx}{x-2}$

$$\int_{1}^{2-r} \frac{dx}{x-2} + \int_{2+r}^{4} \frac{dx}{x-2} = \text{Log} |x-2| \Big|_{x=1}^{x=2-r} + \text{Log} |x-2| \Big|_{x=2+r}^{x=4}$$

$$= \text{Log} r - \text{Log} 1 + \text{Log} 2 - \text{Log} r$$

$$= \text{Log} 2.$$

Integral of Indented Contour

Theorem

If f(z) has a simple pole at z=a on the real axis, then

$$\lim_{r\to 0} \int_{C_2} f(z)dz = \pi i \operatorname{Res}_{z=a} f(z)$$

Integral of Indented Contour of Rational Functions

Theorem

Let $f(z) = \frac{P(z)}{Q(z)}$, where P and Q are polynomials of degree m and n, respectively, and $n \ge m + 2$.

If $Q(x) \neq 0$ and has simple zeros at the points t_1, t_2, \dots, t_L on the x-axis, then

P.V.
$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx = 2\pi i \sum_{j=1}^{K} \operatorname{Res}_{z=z_{j}} f(z) + \pi i \sum_{j=1}^{L} \operatorname{Res}_{z=t_{j}} f(z)$$

where z_1, z_2, \dots, z_K are the poles of f(z) that lie in the upper half-plane.

EX 1: Evaluate P.V. $\int_{-\infty}^{\infty} \frac{dx}{(x^2 - 3x + 2)(x^2 + 1)}$.

Integral of Indented Contour of Rational Functions

Corollary

Let $f(z) = \frac{P(z)}{Q(z)}$, where P and Q are polynomials of degree m and n, respectively, and $n \ge m + 2$.

If $Q(x) \neq 0$ and has simple zeros at the points t_1, t_2, \dots, t_L on the x-axis, then

P.V.
$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx = -2\pi i \sum_{j=1}^{K} \underset{z=\tau_{j}}{\text{Res }} f(z) - \pi i \sum_{j=1}^{L} \underset{z=t_{j}}{\text{Res }} f(z)$$

where $\tau_1, \tau_2, \dots, \tau_K$ are the poles of f(z) that lie in the lower half-plane.

Fourier Integral of Indented Contour of Rational Functions

Corollary

Let $f(z) = \frac{P(z)}{Q(z)}$, where P and Q are polynomials of degree m and n, $n \ge m+1$, respectively.

Let $Q(x) \neq 0$ and have simple zeros at the points t_1, t_2, \cdots, t_L on the x-axis. If α is a positive real number, then

P.V.
$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} e^{i\alpha x} dx = 2\pi i \sum_{j=1}^{K} \operatorname{Res}_{z=z_{j}} f(z) e^{i\alpha z} + \pi i \sum_{j=1}^{L} \operatorname{Res}_{z=t_{j}} f(z) e^{i\alpha z}$$

That is,

P.V.
$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \cos(\alpha x) dx = -2\pi \sum_{j=1}^{K} \operatorname{Im} \left[\operatorname{Res}_{z=z_{j}} f(z) e^{i\alpha z} \right] - \pi \sum_{j=1}^{L} \operatorname{Im} \left[\operatorname{Res}_{z=t_{j}} f(z) e^{i\alpha z} \right]$$

P.V.
$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \sin(\alpha x) dx = 2\pi \sum_{j=1}^{K} \text{Re} \left[\underset{z=z_{j}}{\text{Res}} f(z) e^{i\alpha z} \right] + \pi \sum_{j=1}^{L} \text{Re} \left[\underset{z=t_{j}}{\text{Res}} f(z) e^{i\alpha z} \right]$$

where z_1, z_2, \dots, z_K are the poles of f(z) that lie in the upper half-plane.

EX 1: Evaluate P.V. $\int_{-\infty}^{\infty} \frac{xe^{i2x}}{x^2 - 1} dx$.

EX 2: Evaluate P.V. $\int_{-\infty}^{\infty} \frac{\sin x}{x(x^2 - 2x + 2)} dx.$

Integration Along a Branch Cut

Motivation: Since the integration involving z^{α} is a multiple-valued function, we can force z^{α} to be single valued for $z = re^{i\theta}$ by restricting θ to some interval of length 2π . We use the branch of the logarithm \log_0 as

$$z^{\alpha} = e^{\alpha \ln z} = e^{\alpha (\ln r + i\theta)}$$

where $z\neq 0$ and $0 < \theta \le 2\pi$ is a branch of z^{α} .

Theorem

Let $f(z) = \frac{P(z)}{Q(z)}$, where P and Q are polynomials of degree m and n, respectively, and $n \ge m+2$. If $Q(x) \ne 0$ for x > 0 and Q(x) has a zero of order at most 1 at the origin,

and $0 < \alpha < 1$, then

P.V.
$$\int_0^\infty \frac{x^{\alpha} P(x)}{Q(x)} dx = \frac{2\pi i}{1 - e^{i2\alpha\pi}} \sum_{j=1}^K \underset{z=z_j}{\text{Res}} \left(z^{\alpha} f(z) \right)$$

where z_1, z_2, \dots, z_K are the nonzero poles of f(z).

Proof:

EX 1: Evaluate P.V. $\int_0^\infty \frac{x^{-\alpha}}{1+x} dx$, $0 < \alpha < 1$.

EX 3: Evaluate P.V. $\int_0^\infty \frac{x^{-\alpha}}{x-4} dx, \ 0 < \alpha < 1.$

EX 5: Evaluate P.V.
$$\int_0^\infty \frac{x^\alpha}{(x^2+1)^2} dx = \frac{(1-\alpha)\pi}{4\cos(\frac{\alpha\pi}{2})}, -1 < \alpha < 3$$

Argument Principle

Theorem

Let C be a simple closed contour lying entirely within a domain D. Suppose f is analytic in D except at a finite number of poles inside C, and that $f(z) \neq 0$ on C. Then

$$\frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} dz = Z_f - P_f,$$

where Z_f is the number of zeros of f that lie inside C and P_f is the number of poles of f that lie inside C.

Proof:

EX 1: Evaluate $\oint_C f'(z)/f(z)dz$ where C:|z|=4 is positively oriented.

$$f(z) = \frac{(z-8)^2 z^3}{(z-5)^4 (z+2)^2 (z-1)^5}$$

Sol:

EX: Evaluate $\oint_C f'(z)/f(z)dz$ where $C:|z|=\frac{3}{2}$ is positively oriented. $f(z) = \frac{(z-3iz-2)^2}{z(z^2-2z+2)^5}$

$$f(z) = \frac{(z - 3iz - 2)^2}{z(z^2 - 2z + 2)^5}$$

Ans: $-18\pi i$

Laplace Transform

Definition

Let f(t) be a real function and s be a complex variable. The Laplace transform of f(t) is defined as

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

and is denoted as $\mathcal{L}\{f(t)\}\$. The corresponding inverse pair is $f(t)=\mathcal{L}^{-1}\{F(s)\}$.

Example

The Laplace transform of $f(t) = 1, t \ge 0$ is

$$\mathcal{L}\left\{1\right\} = \int_0^\infty e^{-st}(1) dt = \lim_{b \to \infty} \int_0^b e^{-st} dt$$
$$= \lim_{b \to \infty} \frac{-e^{-st}}{s} \Big|_0^b = \lim_{b \to \infty} \frac{1 - e^{-sb}}{s}.$$
 (5)

If s is a complex variable, s = x + iy, then recall

$$e^{-sb} = e^{-bx}(\cos by + i\sin by). \tag{6}$$

From (6) we see in (5) that $e^{-sb} \to 0$ as $b \to \infty$ if x > 0. In other words, (5) gives $\mathcal{L}\{1\} = \frac{1}{s}$, provided Re(s) > 0.

Exponential Order *c*

Definition

A function f is said to be **exponential order** c if there exist constants c>0, M>0, and T>0 so that $|f(t)| < Me^{ct}$, for t>T.

Remark 1: $e^{-ct} | f(t) |$ is bounded; that is, $e^{-ct} | f(t) | < M$ for t > T.

Remark 2: The condition $|f(t)| < Me^{ct}$ for t > T states that the graph of f on the interval (T, ∞) does not grow faster than the graph of the exponential function Me^{ct} .

Sufficient Conditions for Existence of Laplace Transform

Theorem

Suppose f is piecewise continuous on $[0, \infty)$ and of exponential order c for t > T. Then $\mathcal{L}\{f(t)\}$ exists for Re(s) > c.

Proof:

$$\mathcal{L}\{f(t)\} = \int_0^T e^{-st} f(t) dt + \int_T^\infty e^{-st} f(t) dt = I_1 + I_2.$$

The integral I_1 exists since it can be written as a sum of integrals over intervals on which $e^{-st}f(t)$ is continuous.

To prove the existence of I_2 , we let s be a complex variable s = x + iy.

$$|e^{-st}| = |e^{-xt}(\cos yt - i\sin yt)| = e^{-xt} \text{ and } |f(t)| \le Me^{ct}, t > T,$$

$$|I_{2}| \leq \int_{T}^{\infty} |e^{st} f(t)| dt \leq M \int_{T}^{\infty} e^{-xt} e^{ct} dt$$

$$= M \int_{T}^{\infty} e^{-(x-c)t} dt = -M \frac{e^{-(x-c)t}}{x-c} \Big|_{T}^{\infty} = M \frac{e^{-(x-c)T}}{x-c}$$

for x = Re(s) > c.

Since $\int_{T}^{\infty} Me^{-(x-c)t} dt$ converges, this implies that I_2 exists for Re(s) > c.

Table of Laplace Transform

(i)
$$\mathcal{L}\left\{e^{at}\right\} = \frac{1}{s-a}$$
 [Re(s) > Re(a)]

(ii)
$$\mathcal{L}\{1\} = \mathcal{L}\{e^{0t}\} = \frac{1}{s}$$
 [Re(s) > 0]

(iii)
$$\mathcal{L}\{\cos \omega t\} = \operatorname{Re} \mathcal{L}\left\{e^{i\omega t}\right\} = \frac{s}{s^2 + \omega^2}$$
 [ω real, $\operatorname{Re}(s) > 0$]

(iv)
$$\mathcal{L}\{\sin \omega t\} = \operatorname{Im} \mathcal{L}\left\{e^{i\omega t}\right\} = \frac{\omega}{s^2 + \omega^2}$$
 [ω real, $\operatorname{Re}(s) > 0$]

(v)
$$\mathcal{L}\{\cosh \omega t\} = \mathcal{L}\{\cos i\omega t\} = \frac{s}{s^2 - \omega^2}$$
 [ω real, Re(s) > $|\omega|$]

(vi)
$$\mathcal{L}\{\sinh \omega t\} = \mathcal{L}\{-i\sin i\omega t\} = \frac{\omega}{s^2 - \omega^2}$$
 [ω real, Re(s) > $|\omega|$]

(vii)
$$\mathcal{L}\left\{e^{-\lambda t}\cos\omega t\right\} = \operatorname{Re}\mathcal{L}\left\{e^{(-\lambda + i\omega)t}\right\} = \frac{s + \lambda}{(s + \lambda)^2 + \omega^2}$$

 $[\omega, \lambda \text{ real}, \operatorname{Re}(s) > -\lambda]$

(viii)
$$\mathcal{L}\left\{e^{-\lambda t}\sin\omega t\right\} = \operatorname{Im}\mathcal{L}\left\{e^{(-\lambda+i\omega)t}\right\} = \frac{\omega}{(s+\lambda)^2 + \omega^2}$$

 $[\omega, \lambda, \operatorname{real}, \operatorname{Re}(s) > -\lambda]$

(ix)
$$\mathcal{L}\left\{t^n e^{at}\right\} = \frac{n!}{(s-a)^{n+1}}$$
 [Re(s) > Re(a)]

(x)
$$\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}}$$
 [Re(s) > 0]

(xi)
$$\mathcal{L}\{t\cos\omega t\} = \operatorname{Re}\mathcal{L}\left\{te^{i\omega t}\right\} = \frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$$
 [ω real, $\operatorname{Re}(s) > 0$]

(xii)
$$\mathcal{L}\{t\sin\omega t\} = \operatorname{Im}\mathcal{L}\left\{te^{i\omega t}\right\} = \frac{2s\omega}{\left(s^2 + \omega^2\right)^2}$$
 $[\omega \text{ real, } \operatorname{Re}(s) > 0]$

中央大學通訊系 張大中

Complex Analysis: Unit-4

(xiii)
$$\mathcal{L}\left\{F(t)e^{-at}\right\}(s) = \mathcal{L}\left\{F\right\}(s+a)$$

(xiv)
$$\mathcal{L}{aF(t) + bH(t)} = a\mathcal{L}{F(t)} + b\mathcal{L}{H(t)}$$

Proof of Laplace Transform Pairs:

$$\mathcal{L}\left\{F(t)e^{-at}\right\}(s) = \int_0^\infty F(t)e^{-at}e^{-st} dt$$
$$= \int_0^\infty F(t)e^{-(s+a)t} dt = \mathcal{L}\left\{F\right\}(s+a).$$

Laplace Transform of Time-Shift Functions

Definition

The unit step function or Heaviside function u(t - a) is 0 for t < a, has a jump of size 1 at t = a (where we can leave it undefined), and is 1 for t > a, in a formula:

$$u(t - a) = \begin{cases} 0 & \text{if } t < a \\ 1 & \text{if } t > a \end{cases}$$
$$(a \ge 0).$$

$$\mathcal{L}\{u(t-a)\} = \int_0^\infty e^{-st} u(t-a) \, dt = \int_a^\infty e^{-st} \cdot 1 \, dt = -\frac{e^{-st}}{s} \bigg|_{t=a}^\infty = \frac{e^{-as}}{s} \qquad (s > 0)$$

Laplace Transform of Time-Shift Functions

If
$$\mathcal{L}{f(t)} = F(s)$$
, then $\mathcal{L}{f(t-a)u(t-a)} = e^{-as}F(s)$.

Proof:

Laplace Transform of the Derivative and Integral

- Laplace Transform of the Derivative:

By looking at the transform of the derivative F'(t),

$$\mathcal{L}\left\{F'\right\}(s) = \int_0^\infty e^{-st} F'(t) dt$$
$$= -\int_0^\infty (-s) e^{-st} F(t) dt + e^{-st} F(t) \Big|_0^\infty$$

assuming that $e^{-st}F(t) \to 0$ as $t \to \infty$,

$$\mathcal{L}\left\{F'\right\}(s) = s\mathcal{L}\left\{F\right\}(s) - F(0).$$

Iterating this equation results in

$$\mathcal{L}\left\{F''\right\}(s) = s\mathcal{L}\left\{F'\right\}(s) - F'(0)$$
$$= s^2 \mathcal{L}\left\{F\right\}(s) - sF(0) - F'(0),$$

and, in general,

$$\mathcal{L}\left\{F^{(k)}\right\}(s) = s^k \mathcal{L}\{F\}(s) - s^{k-1}F(0) - s^{k-2}F'(0) - \dots - F^{(k-1)}(0).$$

- Laplace Transform of Integral:

$$\mathcal{L}\left\{\int_{0}^{t} f(\tau) d\tau\right\} = \frac{1}{s} F(s)$$

$$g(t) = \int_0^t f(\tau) d\tau, g'(t) = f(t), g(0) = 0$$

$$\mathcal{L}\{f(t)\} = \mathcal{L}\{g'(t)\} = s\mathcal{L}\{g(t)\} - g(0) = s\mathcal{L}\{g(t)\}.$$

Ex 1: Find the current i(t) in the *RC*-circuit if a single rectangular wave with voltage V_0 is applied.

Solution:

EX 2: Find the function f(t) that satisfies

$$\frac{d^2 f(t)}{dt^2} + 2\frac{df(t)}{dt} + f(t) = \sin t$$

for $t \ge 0$ and which at t = 0 has the properties f(0) = 1, f'(0) = 0.

Inverse Laplace Transform

Theorem (Mellin's Inverse Formula)

If f and f' are piecewise continuous on $[0, \infty)$ and f is of exponential order c for $t \geq 0$, and F(s) is a Laplace transform, then the **inverse** Laplace transform $\mathcal{L}^{-1}\{F(s)\}$ is

$$f(t) = \mathcal{L}^{-1}{F(s)} = \frac{1}{2\pi i} \lim_{R \to \infty} \int_{\gamma - iR}^{\gamma + iR} e^{st} F(s) ds,$$

where $\gamma > c$. Suppose F(s) has a finite number of poles s_1, s_2, \ldots, s_n to the left of the vertical line $\text{Re}(s) = \gamma$ and sF(s) is bounded as $R \to \infty$, then

$$\mathcal{L}^{-1}\left\{F(s)\right\} = \sum_{k=1}^{n} \operatorname{Res}\left(e^{st}F(s), s_{k}\right).$$

Remark:

The fact that F(s) has singularities s_1, s_2, \ldots, s_n to the left of the line $x = \gamma$ makes it possible for us to evaluate $\mathcal{L}^{-1}\{F(s)\}$ by using an appropriate closed contour encircling the singularities.

Proof:

EX 1: Evaluate
$$\mathcal{L}^{-1}\left\{\frac{1}{s^3}\right\}$$
, $\operatorname{Re}(s) > 0$.

Note:
$$\mathcal{L}\left\{t^{n}\right\}=n!/s^{n+1}$$

EX 2: Evaluate
$$\mathcal{L}^{-1} \left\{ \frac{e^{-2s}}{(s-1)(s-3)} \right\}$$
, Re(s) > 3.

Sol:

Note:

$$f(t) = \begin{cases} -\frac{1}{2}e^{t-2} + \frac{1}{2}e^{3(t-2)}, & t > 2\\ 0, & t < 2. \end{cases}$$
$$= -\frac{1}{2}e^{t-2}\mathcal{U}(t-2) + \frac{1}{2}e^{3(t-2)}\mathcal{U}(t-2).$$

unit step function
$$\mathcal{U}(t-a) = \begin{cases} 1, & t \ge a \\ 0, & t < a \end{cases}$$

EX 3: Find the piecewise smooth function with Laplace transform $1/(s^4 - 1)$.

Definition of Fourier Transform and Inverse Fourier Transform

Definition

Let f(t) be a real function defined on the interval $(-\infty, \infty)$ and ω is a real variable.

The **Fourier Transform** of f(t) is defined as

$$F(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t) \ e^{-i\omega t} dt$$

and the inverse Fourier Transform is

$$f(t) = \int_{-\infty}^{\infty} F(\omega) \ e^{i\omega t} d\omega$$

Fourier Transform

Example: Find the Fourier transform of $f(t) = e^{-|t|}$.

Fourier Transform of the Derivative

Theorem

Let f(x) be continuous on the x-axis and $f(x) \to 0$ as $|x| \to \infty$. Furthermore, let f'(x) be absolutely integrable on the x-axis. Then

$$\mathcal{F}\{f'(x)\} = iw\mathcal{F}\{f(x)\}.$$

Proof:

Inverse Fourier Transform

Ex1: Find the inverse Fourier transform of $F(\omega) = \frac{1}{\pi(1+\omega^2)}$.

Ex2: Find the Fourier transform of the function and confirm the inversion formula.

$$F(t) = \begin{cases} \sin t, & |t| \le 6\pi, \\ 0, & \text{otherwise} \end{cases}$$

Ex3: Find a function that satisfies the differential equation

$$\frac{d^2 f(t)}{dt^2} + 2\frac{df(t)}{dt} - 3f(t) = \begin{cases} 1, & |t| < 1\\ 0, & \text{otherwise} \end{cases}$$

Numerical Validation for Ex3:

