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Zero of Order n

Definition
A number zo is zero of a function f if f(zo) = 0. We say that an analytic function f has a
zero of order nat z = zo if

zn is a zero of f and of its first n—1 derivatives

.
~ Y

flz0) =0, f'(z0) =0, f(20) =0, ..., f" YU (z) =0, but f"™)(z) # 0.

A zero of order n is also referred to as a zero of multiplicity n.

Theorem

A function f that is analytic in some disk |z — z5| < R has a zero of order
n at z = zg if and only if f can be written

f(2) = (2 = 20)"&(2),

where ¢ is analytic at z = zp and ¢(zp) # 0.
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EX: Determine the order of zero at z=0.
f(z) =zsinz’

Sol:
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Pole of Order n

Theorem

A function f analytic in a punctured disk 0 < | z — zp| < R has a pole of
order n at z = zp if and only if f can be written

¢(z)

(2 — z0)™

where ¢ is analytic at z = zg and ¢(zp) # 0.

flz) =

Corollary
If the functions g and h are analytic at z = z5 and h has a zero of order

n at z = zp and g(zg) # 0, then the function f(z) = g(z)/h(z) has a pole
of order n at z = zp.
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EX 1: Locate the poles of g(z) = c and specify their order.

Sol:

7" +267°+5

t : :
EX 2: Locate the poles of 9(z) =%§ﬂ) and specify their order.

Sol:
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Residue

Definition
If f(z) has a singularity at z=zo inside C but is otherwise analytic on C and inside C.
Then f(z) has a Laurent series

f(z) = 2 anlz — Iu}” + + — T

=1}

that converges for all points near z=zo, in some domain 0<|z-zo|<R.

The coefficient b1 is called the residue of f(z) at z=zo. Recall that

1 cJS @) dz, n=1223,---

" 27ide(z-z,)™
we have
1
f z)dz
b, = o (2)
=Res f (z)

Note: also notation as b; = Res|[f(2), z,].
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EX 1: Integrate f (z) = z™*sinz counterclockwise around the unit circle.
Sol:

1
EX 2: Integrate f(2)=———; clockwise around the circle C:| z |= %
Sol: B

EX 3: Integrate f(z) =ze¥* counterclockwise around the circle C:|z|=4.
Sol:
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Residue at a Simple Pole
Theorem

If f has a simple pole at z = z, then

Res(f(2), 20) = lim (= = 20)/(2).
Proof:
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Residue at a Pole of Order n

Theorem

If f has a pole of order n at z = 2z, then

1 (n—1

Res(f(2), z0) = =) Jim e (2 = 20)" [ (2)-
Proof: '
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EX 1: Compute the residues at the singularities of

L 1
1z (z —1)2(z — 3)

Sol:

EX 2: Compute the residues at the singularities of

COSz
f(Z) :m.

Sol:
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Residue at a Simple Pole

Theorem

Suppose a function f(z) can be written as a quotient f(z) = p(z)/q(z), where p(z) and q(z) are
analytic at z = zo . If p(zo)#0 and if the function q(z) has a simple zero at zo , then f (z) has a
simple pole at z = zoand

Res f (z) = Res 22 _ P(z,)

=% q(z)  9'(z)
Proof:
Example: f(z)= 932?. Find Res f(z).
Z Z =i
Ans: -5i.
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EX 1: Compute the residue at each singularity of f(z)=cotz.
Sol:

1

EX 2: : Compute the residue at each singularity of f(z)=—;
Sol:

" +1
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Cauchy’s Residue Theorem

Theorem

Let D be a simply connected domain and C a simple closed contour lying
entirely within ). If a function f is analytic on and within C', except at
a finite number of isolated singular points z,, zs, ..., z, within C, then

j£ f(z)dz = 2xi il{es (f(2), z1)-
Jeo =1

Proof:
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EX 1. Evaluate ?{
Sol:

EX 2: Evaluate c}{
Sol:

JO

T EE VR T

S

2z4+6 ) ) : .
_ dz, where the contour C' is the circle |z — i| = 2.
22 +
=
— dz, where the contour ' is the circle |z| = 2.
z* + 5%

Complex Analysis: Unit-4
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EX 3: Evaluate % tan z dz, where the contour (' i1s the circle

SO

Sol:

EX 4: Evaluate cﬁ
C
Sol:

S AR

tan z
7 -1

z| = 2.

: , 3
dz in the counterclockwise sense where C:|z|= 5
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EX 5: Evaluate q}
C
Sol:

RS SN R

p?
YA

-1 : . . L
- dz inthe counterclockwise sense where C is the unit circle.
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Trigonometric Integration

Consider the following integrals
2m
f F(sin#, cosf)db
0

The basic idea here is to convert the real trigonometric integral into a complex integral, where
the contour C is the unit circle |z| = 1 centered at the origin.

: y
Let 7 =¢'° 0<6 < 2n)
z=elf
dz dz C
E:"(ﬁg:!‘: (f{-}:?
{ £,
e —ie -1 0
sinf = < .{' = — 9 b
21 21
, 0 4 o=i0 o4 -1
Ccos = —
2 2

We have that
2 | z—z70 z+z71\ dz
/ F(sinf,cos®)do = | F — —
0 - 2i 2 17
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deo

EX 1: Evaluate joz”ﬁ.
—COS

Sol:

2
Exercise: Evaluate /
0

Ans: 2_*:
3

S AR

do

5+ 4sinfg

Complex Analysis: Unit-4
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EX 2: Evaluate [~ —_ 97

Sol:

0 1+3cos’ 6

S AR

Complex Analysis: Unit-4
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Improper Integral

Def: Improper integral f(x) over [0, o) is defined by

/ flz)dz = lllll/ flz)da.
0

provided that the limit exists. Similarly,

0 0
/ f(z)dr = lim / f(z) dz.
J—6a R—oo)__p

If f(x) iscontinuous on (—o0,), then

X 0 X
/ f(z)dx = / f(x)dx + / f(x)dx
o 00 = Booad © & . 0

provided both integrals are convergent (limit exists).

Note: If ffooo f(x) converges,

X R
/ f(x)dxr = lim / f(x)dx.
b s R—oo J_ R

However, the symmetric limit may exists even though the improper integral
©o . .
f_oo f(x) isdivergent.
Ex:
f_kx x dx is divergent since limp_. o fOR Edn = Bfin . %[{2 — 00.

R
lim/ rdr= hm 7[1{2 (—R)?) =

LR & LA R Complex Analysis: Unit-4
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Cauchy Principal Value

Let f (x) be a continuous real-valued function for all . The Cauchy prin-
cipal value (P.V.) of the integral ffcm f (z) dz is defined by

o0 H
BV / f(x)de = lim / f(z)dex,
R—oa oy

of — D

provided the limit exists.

= dX
Example: Find P.V. I .
=X +1
Sol:
e 1 -R J.
PN / = dr = lim = dx
Jsmaibe 1+ 1 R—oo f_p %+ 1
= lim [Arctan R — Arctan (—R)]
R—co
=Bz "

LI S TR W S Complex Analysis: Unit-4
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Theorem

Let f(z) =

Cauchy Principal Value of the Integral of Rational Functions

P(2)

T , where P and Q are polynomials of degree m and n, respectively. If Q(X) #0
z

for all real xand n>m+2 then

> P(x)
~Q(x)

P.V. dx = 2mz Res f(2)
1 77

where z,,2,,-++,Z, are the poles of f(z) that lie in the upper half-plane.

Proof:

TN & Ul I Complex Analysis: Unit-4
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S AR

Complex Analysis: Unit-4
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EX 1: Evaluate P.V. [~ x
e Bvaluate PV. | oo
Ol.

= dX
EX 2: Evaluate P.V. | ———.

= (X* +4)
Sol:

TN & Ul I Complex Analysis: Unit-4
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Jordan’s Lemma in Upper Half-Plane

Theorem

Suppose that P and Q are polynomials of degree m and n, respectively, where

n > m + 1. If Cy is the upper semicircle z = Re'? for 0 < 6 < m, then for a >
0,
: iaz @ —
}%1_1}‘1;10 e € Q(Z)dz 0
Proof:

LRI £ U= I Complex Analysis: Unit-4
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S AR
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Jordan’s Lemma in Lower Half-Plane

Theorem

Suppose that P and Q are polynomials of degree m and n, respectively, where n >
m + 1. If Cgis the lower semicircle z = Re'? for —mt < 8 <0, then for a > 0,

. —iaz@ —
A e e g dr =0

Proof:

LRI £ U= I Complex Analysis: Unit-4
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Fourier Integrals

Corollary

Let P and Q are polynomials of degree m and n, respectively. If Q(X) = Ofor all real x
and N>=m+1 then

Py, [ P(X; e*dy = 277 |2Re{ 8 }

YASYA

That is,

P.V. f ()cos(ax)dx+|j ()sm(ax)dx h
> Q(x) Q(x)

-2e{ro| S el gt || Bl o5 }}L

-

We have
P.V. I cos(ax)dx——ZzZIm{B?{QEZ; Iaz:|}
VI sm(ax)dx 27[2R€{R€S|: (2) "”}}
=2 | Q(2)

where a >0 and Z;,Z,,-*,Z are the poles of P(z)/ Q(z) that lie in the upper half-plane.

TN & Ul I Complex Analysis: Unit-4
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EX 1: Evaluate P.V. j -
Sol:

S AR

XSsin X
X2 +1

dx.

Complex Analysis: Unit-4

29



EX 4: Evaluate P.V.

Sol:
(Method #1)

S AR

o COS X

——ax

—0 X 41

Complex Analysis: Unit-4
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(Method #2)

S AR

Note, in this example,

oocosxdx#Re pV/m
p’“«/;oo-’c'i". -

ot

o X +i

dx .

Complex Analysis: Unit-4
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Improper Integrals
Definition

Suppose t;, ty, -+, t; are discontinuous points on the x-axis for f(x), then
L+1

P.V. f f(x)dx = 11m Zf f(x)dx

E—)U j= ti-1te

where t, = —R and ¢, =

4 d
Example: Evaluate P.V. [, — x2
Sol:

f-"-" dx ‘ f‘* dx . v=der c=4
1ox~=2 2ar X =2 =Loglr— 2‘\3::1 +Loglx -2l =2+

=Logr - Logl +Log2 —Logr
=Log2.

TN & Ul I Complex Analysis: Unit-4
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Integral of Indented Contour

Theorem

If f(z) has a simple pole at z=a on the real axis, then

lim [ f(2)dz =ziRes f(2)

r—0

Proof:

TN & Ul I Complex Analysis: Unit-4
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Integral of Indented Contour of Rational Functions

Theorem

Let f(z)= % , where P and Q are polynomials of degree m and », respectively, and N = m+ 2.
z
If Q(X)=0 and has simple zeros at the points t,t,, -+, t; on the x-axis, then
P(x
P.V. I E ; dx = 27z|ZRes f (z)+7r|ZRes f(2)
1 277

where Z;,2;, ", Z are the poles of f(z) that lie in the upper half-plane.
Proof:
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EX 1: Evaluate P.V. [~

Sol:

S AR

dx
= (X2 =3X+2)(X* +1)

Complex Analysis: Unit-4
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Integral of Indented Contour of Rational Functions

Corollary
P(2)

Let f(z)= T , where P and Q are polynomials of degree m and », respectively, and N = m+ 2.
z
If Q(X)=0 and has simple zeros at the points t,t,, -+, t; on the x-axis, then
= P(X L <
P.V. I PO gy = —271) Res f(z)—7i) Res f(z)
—o Q(X) i1 z=1; -1 Z=t;

where 7,7,,-*+,7 are the poles of f(z) that lie in the lower half-plane.

> X
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Fourier Integral of Indented Contour of Rational Functions
Corollary
Let f(z)= % , where P and Q are polynomials of degree m and n, n > m + 1, respectively.
YA

Let Q(x)=0 and have simple zeros at the points tq, t,, -, t; on the x-axis. If «is a positive
real number, then

* P(X) iax : c iaz H S iaz
P.V. | ——Z2e™dx=27i) Res f(z)e' +7i) Resf(z)e
= Q(X) j=1 27 i 27
That s,
[ P(X) < iaz - iaz
P.V. Tcos(ozx)dx——27rZIm Res f ()" | —z) Im Res f(z)e
* X j=1 =Zj j=1 =
P.V. | [ %sm(ax)dx 27zz Re[Res f(z)e'“z} +7ZZ Re[Res f(z)e"”}
X =1 =

where z,,7,,---,Z, are the poles of f(z) that lie in the upper half-plane.

TN & Ul I Complex Analysis: Unit-4
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i2x

dx .

EX 1: Evaluate P.v. | X
D G |
Sol:
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sin X

EX 2: Evaluate p.V. [~ dx.

Sol:

S AR

= X(X* = 2X+2)

Complex Analysis: Unit-4
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Integration Along a Branch Cut

Motivation: Since the integration involving z“is a multiple-valued function, we can
force z” to be single valued for z=re" by restricting 6 to some interval of length 27

We use the branch of the logarithm log, as
a _ eoelnz _ ea(lnr+i¢9)

where z#£0 and 0 < @ < 27 is a branch of z%

Theorem

Let f(z) =@, where P and Q are polynomials of degree m and n, respectively,

and n=2m+2_If Q(x)=0 for x>0 and Q(x) has a zero of order at most 1 at the origin,

and O<a <1, then
K

= X*P(X)
P.V. 0de — e'ZOfﬂZB?,S (z°f(2))

where z,z,,---,z, are the nonzero poles of f(2).

TN & Ul I Complex Analysis: Unit-4
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Proof:

S AR

Complex Analysis: Unit-4
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S AR

Complex Analysis: Unit-4
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S AR
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EX 1: Evaluate P.V. j —dx O<a<1l.
Sol:

TN & Ul I Complex Analysis: Unit-4
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S AR

Complex Analysis: Unit-4
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EX 3: Evaluate P.V. 0°°X—4dx, O<a<l.
X_
Sol:

I & U I Complex Analysis: Unit-4
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S AR

Complex Analysis: Unit-4
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EX 5: Evaluate P.V. jo‘”

Sol:

S AR

X" e (l-a)x

— : , —l<a<3
(" +1)° 4003(0”[] .
2

Complex Analysis: Unit-4
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S AR
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Argument Principle

Theorem

Let C be a simple closed contour lying entirely within a domain D. Suppose f is
analytic in D except at a finite number of poles inside C, and that f(z) 0 on C.

Then ’
1_98 "D g7 —p,
2ri 7¢ (2)

where Z; is the number of zeros of f that lie inside C and P; is the number of poles
of f that lie inside C.

Proof:

TN & Ul I Complex Analysis: Unit-4
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EX 1: Evaluate cJSC f'(2)/ f(z)dz where C:|z|=4 is positively oriented.

(z-8)°7°

f2)= (z—-5)"(z+2)*(z-1)°

Sol:

EX: Evaluate <§>C f'(2)/ f(z)dz where C:|z |:g is positively oriented.

f(2) = (z-3iz-2)?
- 2(22-22+2)°

Ans: —187ri

TN & Ul I Complex Analysis: Unit-4
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Laplace Transform

Definition
Let f(t) be a real function and s be a complex variable. The Laplace transform of f(t)
is defined as

F(s) = jo‘” e ' f (t)dt

and is denoted as &£ {f(t)}. The corresponding inverse pairis f({) = & "{F(s)}.

Example
The Laplace transform of f(t) =1, ¢ > 0 is

- )
;P{l}:/ e 1) dt = lim | e *tdt
4 ()

L’_’D'CF ”
—e— 5t b 1 — ()—b'b
= lim = lim ——. (5)
b—oco S 0 b—oo S
If s is a complex variable, s = x + iy, then recall
—sb _ _—br . -
e " = e "(cos by + isin by). (6)

From (6) we see in (5) that e ** — 0 as b — oo if # > 0. In other words, (5)
gives F {1} = —, provided Re(s) > 0.
s

LRI £ U= I Complex Analysis: Unit-4
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Exponential Order ¢

Definition

A function f is said to be exponential order c if there exist constants ¢>0, M>0,
and T>0 so that | f (t) |< Me®, for t>T.

Remark 1: e | f(t)] is bounded:; thatis, e ®| f(t)|<M for t>T.

Remark 2: The condition | f (t) [< Me®for t>T states that the graph of f on the
interval (T,o0) does not grow faster than the graph of the exponential
function Me®.

Y Mect(c > 0)

fit)
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Sufficient Conditions for Existence of Laplace Transform

Theorem

Suppose f is piecewise continuous on [0, co) and of exponential order ¢
for t > T. Then &L {f(t)} exists for Re(s) > c.

Proof:

0

T
CAVIOIES / e " f(t)dt +'/ e M f(t)dt = I + L.

0 T
The integral I, exists since it can be written as a sum of integrals over intervals
on which e 5! f(t) is continuous.
To prove the existence of I5, we let s be a complex variable s = = + iy.

le=st| = |e *!(cosyt — isinyt)| = e ** and | f(t)| < Met, t > T,

12| < / e f(t) | dt < JM/ e Ttectdt
JT JT

o0 —(x—e)T
— M

oo —(z—e)t
— M/ L T —

JT X — C

for x= Re(s) > c.

Since [, Me (*~9)'dt converges, thisimplies that I, exists for Re(s) > c.
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Table of Laplace Transform

* at 1 sue
@ L{e"}=——  [Re(s) > Re(@)] (xiii) L {F(t)e~%} (s) = L{F)(s +a)
(iii) L{coswr} =RekL {e'®'} = o ::wz [@ real, Re(s) > 0]
(iv) Lisinwr} = mL {eior} = e j:aﬂ [w real, Re(s) > 0]
(v) L{coshwr} = L{cosiwt} = ey [w real, Re(s) > |o]]
(vi) L{sinhwr} = L{—i siniwr} = sz_f“ai [w real, Re(s) > |o]]
” " —atiw s+ A
(vii) £ {e7* coswt} = ReL (O} = G Tt
[w, A real, Re(s) > —A] Proof of Laplace Transform Pairs:
. . —Atiw — @ e
(viii) £ {e ¥ sinwr} =ImL [N} = g v L{F@®e ) (s) =/0 F)e e~ dt
[w, A, real, Re(s) > —A] -
n! . == / F(t)e 19" gt = L{F}(s + a).
(ix) L {t”ear} = m [Re(s) > Re(a)] 0
®) L{"} = ——  [Re(s) > 0]
5
v 52 — w?
(xi) L{tcoswt} =Rel {te“’”} = '(2+—2)5 [w real, Re(s) > 0]
S w
(xii) Lfrsinwr) =ImL {re!'} = (—22‘&2)2 [w real, Re(s) > 0]
52+ w

LR & U I Complex Analysis: Unit-4 55




Laplace Transform of Time-Shift Functions

Definition
The unit step function or Heaviside function u(r — a) is 0 for t << a, has a jump of size
1 at t = a (where we can leave it undefined), and is 1 for t > a, in a formula:

ul(t) ult —a)

0 ifr<a
u(t — a) = 1 1 —
1 ift > a |
|
(a = 0). 0 t o a r
Unit step function u(t) Unit step function u(t — a)
= = —st|* —as
—st —st € €
Ef{u(r—a)}=Je u{r—a)dr=Je - 1ldt = — . = (s >0)
0 ; ‘ t—a S

Laplace Transform of Time-Shift Functions

If L{f(} = F(s), then L{f(t — a)u(t — a)} = e~ “F(s).

Proof:
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Laplace Transform of the Derivative and Integral
- Laplace Transform of the Derivative:
By looking at the transform of the derivative F’(t),
o0
L{F'} () =f e S F'(t) dt
0

00

- f (—s)e ' F(t)dt + e " F(1)
0 0

assuming that e ' F(t) — O ast — 00,
LAF'} (s) = sL{F)}(s) — F(0).
Iterating this equation results in
LAF"}(s) =sL{F'} (s) — F'(0)

= s2L{F}(s) — s F(0) — F'(0),
and, in general,

L{F®) 5 = s*6(F)s) = s+ R (0) — sF2F/(0) — - — F¢D (0,

- Laplace Transform of Integral:

t | Proof:
5’9{ Jf(’r} d*r} = S F(s) t
0 ‘ g(f)zjf(ﬂd'r g’ (1) = f(), g0) =0

0

LU0} = L' 1)) = sL{g) — g0) = sL{g)}.
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Ex 1: Find the current i(f) in the RC-circuit if a single rectangular wave with

voltage Vy 1s applied.

Q

v(t)

——

o
v(t)
o

Solution:

LRI & U= I Complex Analysis: Unit-4



EX 2: Find the function f(¢) that satisfies

d*f@t) _df() .
) +ZT + f(¢) = sint

for ¢ > 0 and which at z = 0 has the properties £(0) = 1, f/(0) = 0.

Sol:

I & Ul I Complex Analysis: Unit-4
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Inverse Laplace Transform

Theorem (Mellin’s Inverse Formula)

If f and f’ are piecewise continuous on [0, co) and f is of exponential

order ¢ for £ > 0, and F'(s) is a Laplace transform, then the inverse
Laplace transform & ~1{F(s)} is

~+iR
f(t) = Efj_l{F(s)} — L - lim / e’“'!F(s) ds,

2T R—oo ). iR

where v > ¢. Suppose F(s) has a finite number of poles

S1, 82, ..., Sp to the left of the vertical line Re(s) =+ and

sF'(s) is bounded as R — oo, then

FHF(s)) = Z Res (e‘“F(s}: s;,,,).

=1
Remark:

The fact that F'(s) has singularities s, sa, . . . , S, to the left of the line
x = v makes it possible for us to evaluate & ~'{F(s)} by using an appropriate
closed contour encircling the singularities.
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Proof:

S AR

Complex Analysis: Unit-4
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EX 1: Evaluate & _l{é}, Re(s) > 0.

Sol:

Note: &£ {t"} =n!/s"t1

LRI £ U= I Complex Analysis: Unit-4
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—2s

EX 2: Evaluate :_‘:8_1{ c }, Re(s) > 3

(s —1)(s — 3)
Sol:

Note:
—Llet=2 4 1e30-2) ¢ 5 9

f(t) = ’ ’
0, t< 2.

—2e" 2O (t — 2) + 22T (t - 2).

LI S TR W S Complex Analysis: Unit-4
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EX 3: Find the piecewise smooth function with Laplace transform 1/(s* — 1) .

Sol:

TN & Ul I Complex Analysis: Unit-4
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Definition of Fourier Transform and Inverse Fourier Transform

Definition
Let f(t) be a real function defined on the interval (—0,%0) and @ is a real variable.
The Fourier Transform of f(t) is defined as

1 oo _
Flw)=—/| f(@)e'“dt
(0) =+ [t
and the inverse Fourier Transform is

f(t)=] F(o)e“do

TN & Ul I Complex Analysis: Unit-4
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Fourier Transform

Example: Find the Fourier transform of f(t)=e™
Sol:

LRI £ U= I Complex Analysis: Unit-4
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f (t)
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Fourier Transform of the Derivative

Theorem

Let f(x) be continuous on the x-axis and f(x) — 0 as |x| — . Furthermore, let f' (x)
be absolutely integrable on the x-axis. Then

Ff'0)) = wF (f(0).

Proof:

LI S TR W S Complex Analysis: Unit-4
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Inverse Fourier Transform
1

Ex1: Find the inverse Fourier transform of F(®) = ———-.
7(1l+ o)

Sol:

TN & Ul I Complex Analysis: Unit-4
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Ex2: Find the Fourier transform of the function and confirm the inversion formula.

sinf,  [t] < 6, NN N\ “‘/\J\ 2N

F@) = 0. siliariiss o T T \zlt N e o
Sol:
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Ex3: Find a function that satisfies the differential equation

dzf(t)+2df(t)_3f(t):{1, It]<1
dt

dt? 0, otherwise
Sol:
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Numerical Validation for Ex3:

. f(t) df(t)/dt
-0.1
0.2
0.3 - - ' -
-10 -5 0 5 -10 -5 0 5
t t
1 d?f(t)/dt? d?f(t)/dt?+2df(t)/dt-3f(t)
1 L
0.5¢ .
0
05}
-0.5
-1 0
-10 5 0 5 -10 5 0 5
t t
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