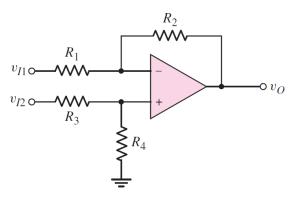
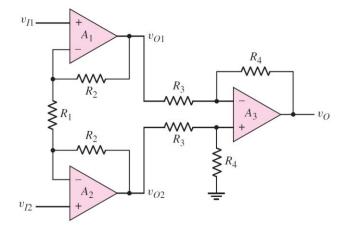
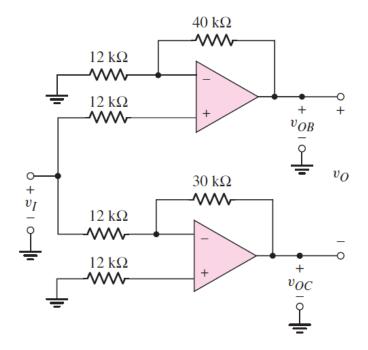

- 1. (10%) For a power MOSFET, $\mathcal{O}_{dev-case} = 1.5 \circ C/W$, $\mathcal{O}_{snk-amb} = 2.8 \circ C/W$, and $\mathcal{O}_{case-snk} = 0.6 \circ C/W$. The ambient temperature is 25 °C.
 - (a) If the maximum junction temperature is limited to $T_{j,\max} = 120 \circ C$, determine the maximum allowed power dissipation.
 - (b) Using the results of part (a), determine the temperature of the case and heat sink.
- 2. (20%) For the common-emitter output stage shown on the right, let V_{CC} = 12 V and R_L = 1 k Ω . Assume the transistor *Q*-point is in the center of the load line.
 - (a) Determine the quiescent power dissipated in the transistor.
 - (b) Assume the sinusoidal output voltage is limited to a 9 V peak-topeak value. Determine
 - (i) the average signal power delivered to the load,
 - (ii) the power conversion efficiency, and
 - (iii) the average power dissipated in the transistor.
- 3. (15%) Consider the MOSFET class-AB output stage shown on the right. The circuit parameters are $V_{DD} = 15$ V and $R_L = 25\Omega$. The transistors are matched with parameters K = 0.25 A/V² and $|V_T| = 1.2$ V. The quiescent drain currents are to be 20 percent of the load current when $v_O = 8$ V. Determine V_{BB} .






5. (15%) In the difference amplifier shown on the right, $R_1 = R_3 = 10 \text{ k}\Omega$, $R_2 = 20 \text{ k}\Omega$, and $R_4 = 21 \text{ k}\Omega$. Determine the CMRR(dB).

6. (15%) Derive the output voltage v_0 in terms of $v_{I2} - v_{I1}$.

7. (10%) What is the voltage gain v_0/v_1 ?

