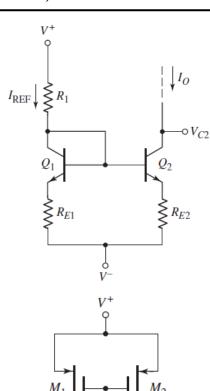
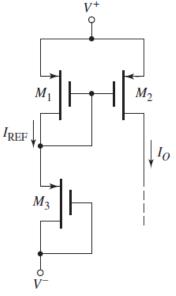
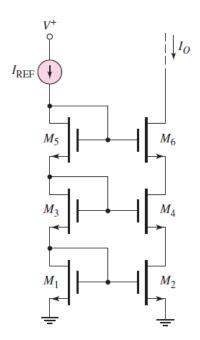
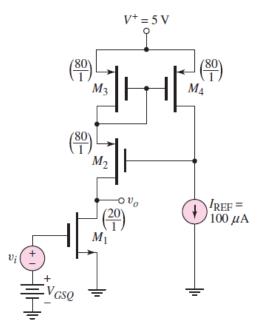
Electronics II, Exam-3, Spring 2016

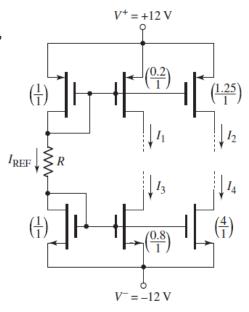

Department of Communication Engineering, National Central University
May 13, 2016, Prof. Dah-Chung Chang (E1-311)


1. (15%) Consider the circuit depicted below, in which the transistors are matched. Assume that base currents are negligible and that $V_A = \infty$. Show that


$$I_O R_{E2} - I_{REF} R_{E1} = V_T \ln \left(\frac{I_{REF}}{I_O} \right).$$

2. (20%) Assume the circuit is biased at $V^+ = +5$ V and $V^- = -5$ V, and assume the transistor parameters are $V_{TP} = -0.5$ V, $k_p' = 50 \,\mu$ A/V², (W/L)₁ =(W/L)₂ = 15, (W/L)₃ = 3, and $\lambda = 0$. Determine I_O and $V_{SD2(sat)}$.


3. (20%) Let $I_{REF} = 0.2$ mA, $K_n = 0.2$ mA/V², $V_{TN} = 1$ V, and $\lambda = 0.02$ V⁻¹. (All transistors are matched.) Determine the output resistance looking into the drain of M_6 .



4. (25%) The parameters of the transistors are $V_{TN} = 0.6 \text{ V}$, $V_{TP} = -0.6 \text{ V}$, $k'_n = 100\mu\text{A/V}^2$, $k'_p = 60\mu\text{A/V}^2$, and $\lambda_n = \lambda_p = 0.02\text{V}^{-1}$. The width-to-length ratios are shown in the figure. The value of V_{GSQ} is such that $I_{D1} = 100\mu\text{A}$, and M_1 and M_2 are biased in the saturation region. Determine the small-signal voltage gain $A_v = v_o/v_i$.

5. (20%) The parameters of the transistors are $V_{TN} = 0.8 \text{ V}$, $V_{TP} = -0.8 \text{ V}$, $k'_n = 100\mu\text{A/V}^2$, $k'_p = 60\mu\text{A/V}^2$, and $\lambda_n = \lambda_p = 0$. The transistor (W/L) ratios are given in the figure. For $R = 100 \text{ k}\Omega$, determine (a) I_{REF} , (b) I_1 , I_2 , I_3 , and I_4 .

