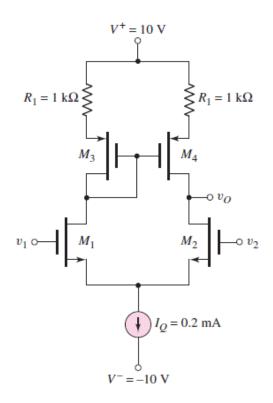

Electronics II, Exam-4, Spring 2016

Department of Communication Engineering, National Central University June 3, 2016, Prof. Dah-Chung Chang (E1-311)


- **1.** (20%) For the differential amplifier, the parameters are $R_1 = 50 \text{ k}\Omega$ and $R_D = 24 \text{ k}\Omega$. The transistor parameters are: $K_n = 0.25 \text{ mA/V}^2$, $\lambda = 0$, and $V_{TN} = 2 \text{ V}$.
 - (a) Determine I_1 , I_Q , I_{D1} , V_{DS1} , and V_{DS4} when $v_1 = v_2 = 0$. (10%)
 - (b) What are the maximum and minimum values of the common-mode input voltage? (10%)

- 2. (30%) The transistor parameters are $\beta = 100, V_{BE}(on) = 0.7V$ and $V_A = \infty$.
 - (a) Determine $R_{\rm E}$ such that $I_{\rm E}=150\,\mu\rm A$. (5%)
 - (b) Derive A_d and A_{cm} for one-sided output at v_{O2} . (20%)
 - (c) Find the value of $CMRR_{dB}$. (5%)


3. (25%) Consider the diff-amp, the PMOS parameters are: $K_p = 80 \mu \text{ A/V}^2$, $\lambda_p = 0.02 \text{ V}^{-1}$, $V_{TP} = -2 \text{ V}$. The NMOS parameters are: $K_n = 80 \mu \text{ A/V}^2$, $\lambda_n = 0.015 \text{ V}^{-1}$, $V_{TN} = +2 \text{ V}$. Determine the open circuit differential-mode voltage gain.

4. (25%) The bias currents I_1 and I_2 are such that a zero dc output voltage is established. The transistor parameters are:

$$K_p = 0.2mA/V^2$$
, $K_n = 0.5mA/V^2$, $V_{TP} = -0.8V$, $V_{TN} = 0.8V$ and $\lambda_n = \lambda_p = 0.01V^{-1}$. Determine

- (a) the small-signal gain $A_v = v_o / v_{in}$, (15%)
- (b) the output resistance R_o . (10%)

