Electronics II, Exam-1, Spring 2016

Department of Communication Engineering, National Central University March 25, 2016, Prof. Dah-Chung Chang (E1-311)

1. (total 30 points: 5 points, 10 points, 10 points, 5 points)

For the circuit in Figure P7.21, the transistor parameters are $\beta = 120$, $V_{BE}(\text{on}) = 0.7 \text{ V}$, and $V_A = 50 \text{ V}$. (a) Design a bias-stable circuit such that $I_{EQ} = 1.5 \text{ mA}$. (b) Using the results of part (a), find the small-signal midband voltage gain. (c) Determine the output resistance R_o . (d) What is the lower 3 dB corner frequency?

(Note: Bias-stable circuit means that $R_{th} = 0.1 \times (1 + \beta)R_{E}$.)

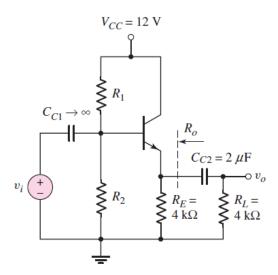


Figure P7.21

2. (total 30 points: 15 points, 15 points)

In the common-gate circuit in Figure P7.72, the transistor parameters are: $V_{TN}=1$ V, $K_n=3$ mA/V², $\lambda=0$, $C_{gs}=15$ pF, and $C_{gd}=4$ pF. Determine the upper 3 dB frequency and midband voltage gain.

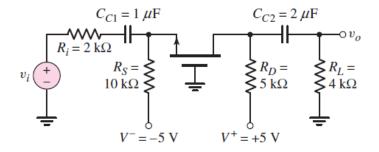
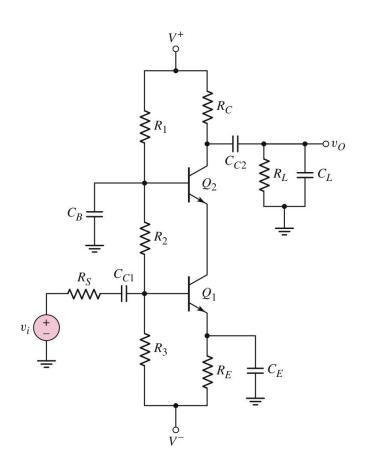



Figure P7.72

3. (total 40 points: 10 points, 10 points, 20 points)

Assume that C_{C1} , C_E , and C_{C2} acts as short circuits in this high frequency analysis.

- (a) Derive the 3dB upper corner frequencies in terms of the transistor capacitors C_u and C_π .
- (b) Derive the midband voltage gain.
- (c) The circuit parameters are $V^+=10V$, $V^-=-10V$, $R_S=0.1k\Omega$, $R_1=42.5k\Omega$, $R_2=20.5k\Omega$, $R_3=28.3k\Omega$, $R_E=5.4k\Omega$, $R_C=5k\Omega$, and $R_L=10k\Omega$. The transistor parameters are $\beta_o=150$, $V_{BE(ON)}=0.7V$, $C_\pi=12\,pF$, and $C_\mu=2\,pF$. Given that the quiescent collector current $I_{CQ}=1.02\,\mathrm{mA}$, determine the values of 3dB upper corner frequency for C_L acting as an open circuit and for $C_L=15\,pF$.

Copyright @ The McGraw-Hill Companies, Inc.