Exam Time: 10:00AM-12:30PM, 2018/5/25

- 1. (30%) The transistor parameters are $\beta = 80, V_{BE}(\text{on}) = 0.7 \text{ V}$ and $V_A = \infty$.
 - (a) Derive the expression for I_o in terms of I_{REF} , β , V_{BE} (on), and R_2 .
 - (b) For $R_2 = 10k\Omega$ and $V^+ = 10V$, find R_1 such that $I_0 = 0.7 \text{ mA}$.

2. (20%) Neglect base currents and assume $V_A = \infty$, $I_{REF} = 100\mu\text{A}$, and $R_E = 700\Omega$. For transistor parameters (reverse saturation currents from collector to emitter) of $I_{S1} = I_{S2} = 5 \times 10^{-15} \text{ A}$, find I_O .

3. (20%) Consider the circuit with $V^+ = +2.5V$ and $R = 15k\Omega$. The transistor parameters are identical, with parameters $V_{TN} = 0.5V$, $k'_n = 80\mu$ A/V², W/L=6, and $\lambda = 0$. Determine I_{Ω} .

4. (25%) Consider the circuit with $V^+ = +5V$ and $V^- = -5V$. The transistor parameters are $V_{TP} = -1.2V$, $k'_p = 80\mu A/V^2$, $(W/L)_1 = (W/L)_2 = 25$, $(W/L)_3 = (W/L)_4 = 4$, and $\lambda = 0$. Determine I_o . 5. (20%) Consider the circuit with $V^+ = +5V$ and $V^- = -5V$. All transistors are identical, with parameters $V_{TN} = 1V, K_n = 80\mu A/V^2$, and $\lambda = 0.02V^{-1}$. Let $I_{REF} = 20\mu A$, determine the output resistance R_o looking into the drain of M_4 .

- 6. (20%) Transistor parameters are V_{TN} = 0.4V, k'_n = 100μA/V², V_{TP} = -0.6V, k'_p = 40μA/V², and λ_n = λ_p = 0. The width-to-length ratios are (W/L)₁ = 15, (W/L)₂ = (W/L)₃ = 9, and (W/L)₄ = 20. Let I_{REF} = 200μA, determine
 (a) I_o, and
 (b) the minimum V_{SD4} such that M₄ is biased in the forward active mode.
- 7. (15%) Transistor parameters are $V_{TN} = 1$ V, $K_n = 1$ mA/V², and $\lambda_n = \lambda_p = 0.01$ V⁻¹. Assume M_1 and M_2 are matched and $I_{REF} = 0.5$ mA. Find the small-signal voltage gain for the load resistance of $R_L = 100k\Omega$.

