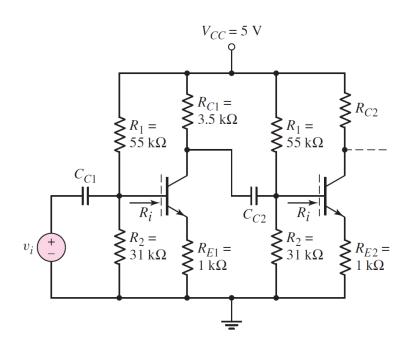

Electronics II, Exam-1, Spring 2018

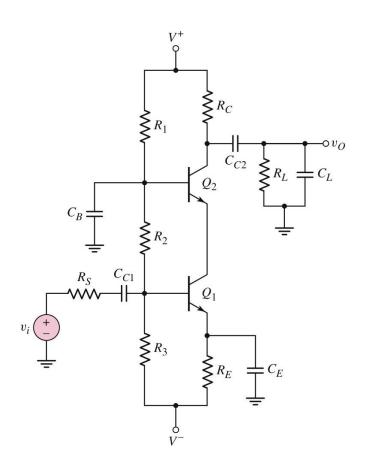
Department of Communication Engineering, National Central University March 30, 2018, Prof. Dah-Chung Chang (E1-311)

1. (total 30 points: 15 points, 15 points)


Let $V^+=5V, V^-=-5V, R_S=4k\Omega, R_D=2k\Omega, R_L=4k\Omega, R_G=50k\Omega$, and $R_i=0.5k\Omega$. The transistor parameters are $K_p=1mA/V^2, V_{TP}=-0.8V, \lambda=0, C_{gs}=4pF$, and $C_{gd}=1pF$.

- (a) Determine the upper 3dB frequency. (15%)
- (b) Find the midband voltage gain. (15%)

2. (total 30 points: 15 points, 15 points)


Find C_{C1} and C_{C2} if the 3dB frequencies associated with each stage of the multistage BJT amplifier is to be 20 Hz and the input resistance R_i is the same for each stage.

3. (total 40 points: 5 points, 20 points, 15 points)

Assume that C_{C1} , C_E , C_B and C_{C2} act as short circuits in this high frequency analysis.

- (a) Assume that the collector currents of Q_1 and Q_2 are the same. Find the collector current of the transistors. (5%)
- (b) The circuit parameters are $V^+=12V$, $V^-=0$, $R_S=1k\Omega$, $R_1=58.5k\Omega$, $R_2=33.3k\Omega$, $R_3=7.92k\Omega$, $R_E=0.5k\Omega$, $R_C=7.5k\Omega$, and $R_L=2k\Omega$. The transistor parameters are $\beta=100$, $V_{BE(ON)}=0.7V$, $V_A=\infty$, $C_\pi=24pF$, and $C_\mu=3pF$. Determine the 3dB frequencies corresponding to the input and output portions of the equivalent circuit for C_L acting as an open circuit. (20%)
- (c) Derive the midband voltage gain. (15%)

Copyright @ The McGraw-Hill Companies, Inc.