dc analysis

$$
\begin{aligned}
& f_{A}=\frac{1}{2 \pi R_{e q} \cdot C_{g s T}} \\
& R_{e q}=\frac{1}{1.81}\|4\| 0.5=0.246 \mathrm{k} \Omega \\
& f_{A}=\frac{1}{2 \pi(246)\left(4 \times 10^{-12}\right)}=162 \mathrm{MHz}
\end{aligned}
$$

$3-d B$ frequency due to $C_{g d T}$
$4 V_{S G}^{2}-5.4 V_{S G}-2.44=0$
$V_{S G}=\frac{5.4 \pm \sqrt{(5.4)^{2}+4(4)(2.44)}}{2(4)}=1.707$
$g_{m}=2 K_{P}\left(V_{S G}+V_{T P}\right)=2(1)(1.707-0.8)$
$g_{m}=1.81 \mathrm{~mA} / \mathrm{V}$

$$
\begin{aligned}
f_{B} & =\frac{1}{2 \pi\left(R_{D} \| R_{L}\right) C_{g d T}} \\
& =\frac{1}{2 \pi(2 \| 4) \times 10^{3} \times 10^{-12}} \\
f & =119 \mathrm{MHz}
\end{aligned}
$$

3. $d B$ frequency due to $C_{g: T}: R_{e q}=\frac{1}{g_{m}}\left\|R_{s}\right\| R_{i}$

Midband gain

$V_{g s}=\frac{-\frac{1}{g_{m}} \| R_{S}}{\frac{1}{g_{m}} \| R_{S}+R_{i}} \cdot V_{i}=\frac{-\frac{1}{1.81} \| 4}{\frac{1}{1.81} \| 4+0.5} \cdot V_{i}$
$=-0.492 V_{i}$
$V_{0}=-g_{m} V_{g s}\left(R_{D} \| R_{L}\right)$
$A_{v}=(0.492)(1.81)(4 \| 2) \Rightarrow \underline{A_{v}}=1.19$

Solution (DC Analysis): We find, for each stage,

$$
R_{T H}=R_{1}\left\|R_{2}=55\right\| 31=19.83 \mathrm{k} \Omega
$$

and

$$
V_{T H}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{C C}=\left(\frac{31}{31+55}\right)(5)=1.802 \mathrm{~V}
$$

Now

$$
I_{B Q}=\frac{V_{T H}-V_{B E}(\mathrm{on})}{R_{T H}+(1+\beta) R_{E}}=\frac{1.802-0.7}{19.83+(201)(1)} \Rightarrow 4.99 \mu \mathrm{~A}
$$

so that

$$
I_{C Q}=0.998 \mathrm{~mA}
$$

Solution (AC Analysis): The small-signal diffusion resistance is

$$
r_{\pi}=\frac{\beta V_{T}}{I_{C Q}}=\frac{(200)(0.026)}{0.988}=5.21 \mathrm{k} \Omega
$$

The input resistance looking into each base terminal is

$$
R_{i}=r_{\pi}+(1+\beta) R_{E}=5.21+(201)(1)=206.2 \mathrm{k} \Omega
$$

Solution (AC Design): The small-signal equivalent circuit is shown in Figure 7.74. The time constant of the first stage is

$$
\tau_{A}=\left(R_{1}\left\|R_{2}\right\| R_{i}\right) C_{C 1}
$$

Figure 7.74 Small-signal equivalent circuit of two-stage BJT amplifier with coupling capacitors for design application
and the time constant of the second stage is

$$
\tau_{B}=\left(R_{C 1}+R_{1}\left\|R_{2}\right\| R_{i}\right) C_{C 2}
$$

If the 3 dB frequency of each stage is to be 20 Hz , then

$$
\tau_{A}=\tau_{B}=\frac{1}{2 \pi f_{3-\mathrm{dB}}}=\frac{1}{2 \pi(20)}=7.958 \times 10^{-3} \mathrm{~s}
$$

The coupling capacitor of the first stage must be

$$
C_{C 1}=\frac{\tau_{A}}{R_{1}\left\|R_{2}\right\| R_{i}}=\frac{7.958 \times 10^{-3}}{(55\|31\| 206.2) \times 10^{3}} \Rightarrow 0.44 \mu \mathrm{~F}
$$

and the coupling capacitor of the second stage must be

$$
C_{C 2}=\frac{\tau_{B}}{R_{C 1}+R_{1}\left\|R_{2}\right\| R_{i}}=\frac{7.958 \times 10^{-3}}{(2.5+55\|31\| 206.2) \times 10^{3}} \Rightarrow 0.386 \mu \mathrm{~F}
$$

\#3

$$
V_{B 1}=\left(\frac{R_{3}}{R_{1}+R_{2}+R_{3}}\right)(12)=\left(\frac{7.92}{58.8+33.3+7.92}\right)(12)=0.9502 \mathrm{~V}
$$

Neglecting base currents

$$
\begin{aligned}
& I_{C}=\frac{0.9502-0.7}{0.5}=0.50 \mathrm{~mA} \\
& r_{\pi}=\frac{\beta V_{T}}{I_{C}}=\frac{(100)(0.026)}{0.5}=5.2 \mathrm{~K} \\
& g_{m}=\frac{I_{C}}{V_{T}}=\frac{0.5}{0.026}=19.23 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

From Eq (7.119(a)),

$$
\begin{aligned}
& \tau_{p \pi}=\left(R_{S}\left\|R_{B 1}\right\| r_{\pi}\right)\left(C_{\pi 1}+C_{M 1}\right) \\
& R_{B 1}=R_{2}\left\|R_{3}=33.3\right\| 7.92=6.398 \mathrm{k} \Omega \\
& C_{M 1}=2 C_{\mu 1}=6 \mathrm{pF}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \tau_{p \pi}=(1\|6.398\| 5.2) \times 10^{3} \times(24+6) \times 10^{-12} \Rightarrow \tau_{p \pi}=22.24 \mathrm{~ns} \\
& f_{H \pi}=\frac{1}{2 \pi \tau_{p \pi}}=\frac{1}{2 \pi\left(22.24 \times 10^{-9}\right)} \Rightarrow f_{H \pi}=7.15 \mathrm{MHz}
\end{aligned}
$$

From Eq (7.120(a)),

$$
\begin{aligned}
\tau_{p \mu} & =\left(R_{C} \| R_{L}\right) C_{\mu 2}=(7.5 \| 2) \times 10^{3} \times 3 \times 10^{-12} \Rightarrow \tau_{p \mu}=4.737 \mathrm{~ns} \\
f_{H \mu} & =\frac{1}{2 \pi \tau_{p \mu}}=\frac{1}{2 \pi\left(4.737 \times 10^{-9}\right)} \Rightarrow f_{H \mu}=33.6 \mathrm{MHz}
\end{aligned}
$$

From Eq. (7.125),

$$
\begin{aligned}
& \left|A_{v}\right|_{M}=g_{m 2}\left(R_{C} \| R_{L}\right)\left[\frac{R_{B 1} \| r_{\pi 1}}{R_{B 1} \| r_{\pi 1}+R_{S}}\right]=(19.23)(7.5 \| 2)\left[\frac{6.40 \| 5.2}{6.40 \| 5.2+1}\right] \\
& \left|A_{v}\right|_{M}=22.5
\end{aligned}
$$

