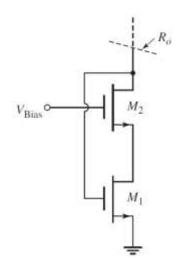
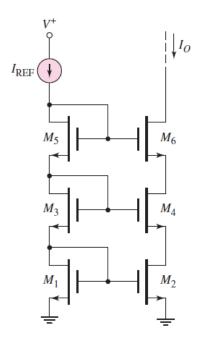
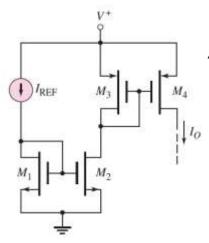

Electronics II, EXAM-3, Spring 2019 Department of Communication Engineering, National Central University

May 17, 2019, Prof. Dah-Chung Chang (E1-311)


1

Exam Time: 10:00AM-11:50AM, 2018/5/17


1. (25%) The transistor parameters are $V_{TN}=0.6V, V_{TP}=-0.6V, k_n'=100 \mu A/V^2, k_p'=60 \mu A/V^2,$ and $\lambda_n=\lambda_p=0.04V^{-1}$. The values of W/L for M_1 and M_2 are 25, and those of all other transistors are 50. The value of V_{GSQ} is such that $I_{DS1}=80 \mu A$ and all transistors are biased in the saturation region. Determine the small-signal voltage gain $A_v=v_o/v_i$.



2. (25%) Assume that both transistors are biased in the saturation region, and that $g_{m1} = g_{m2} = g_m$ and $r_{o1} = r_{o2} = r_o$. Suppose $g_m \gg 1/r_o$, show that $R_o = \frac{2 + g_m r_o}{g_m (1 + g_m r_o)} \approx \frac{1}{g_m}$.

3. (30%) Let $I_{REF} = 0.2 \text{ mA}$, $K_n = 0.2 \text{ mA/V}^2$, $V_{TN} = 1 \text{ V}$, and $\lambda = 0.02 \text{ V}^{-1}$. (All transistors are matched.) Determine the output resistance looking into the drain of M_6 .

4. (20%) Transistor parameters are

$$V_{TN} = 0.4 \text{V}, \ k_n' = 100 \mu \text{A/V}^2, \ V_{TP} = -0.6 \text{V}, \ k_p' = 40 \mu \text{A/V}^2, \ \text{and}$$
 $\lambda_n = \lambda_p = 0$. The width-to-length ratios are $(\text{W/L})_1 = 15$, $(\text{W/L})_2 = (\text{W/L})_3 = 9$, and $(\text{W/L})_4 = 20$. Let $I_{REF} = 200 \mu \text{A}$,

- determine
- (a) I_0 , and
- (b) the minimum V_{SD4} such that M_4 is biased in the forward active mode.