Note: Exam time is 10:00AM-12:10PM, 2019/6/14.

- 1. (**25 pts**) You have to draw the small-signal models (with corresponding transistor numbers) to explain how you derive the following answers:
 - (a) Find the common-mode input resistance of v_1 and v_2 . (5 pts)
 - (b) Find the relationship of v_{02} and $(v_1 v_2)$. (10 pts)
 - (c) Find the output resistance R_o . (10 pts)

2. (25 pts) Assume $\beta = 100$ for all transistors and $V_A = 100V$ for Q7 and Q11, and $V_A = \infty$ for all other transisitors. Determine the output resistance R_o .

1

3. (25 pts) Assume that the parameters of the transistors are $K_n = 0.2mA/V^2$, $V_{TN} = 2V$, and $\lambda = 0.02V^{-1}$. Determine the differential-mode voltage gain $A_d = v_{O3} / v_d$, where $v_d = v_1 - v_2$.

- 4. (25 pts) Consider the multistage bipolar circuit in which dc base currents are negligible. Assume the transistor parameters are $\beta = 120$, $V_{BE}(\text{on}) = 0.7$ V, and $V_A = \infty$.
 - (a) For $v_1 = v_2 = -1.5$ V, find R, R_{E1} , R_C , and R_{E2} such that $v_{O2} = v_O = 0$, $Ic_{O3} = 0.25$ mA, and $Ic_{O4} = 2$ mA. (10 pts)
 - (b) Assuming *CE* acts as a short circuit, determine the differential-mode voltage gain $A_d = v_0 / v_d$, where $v_d = v_1 - v_2$. (15 pts)

