Note: Exam time is 10:00AM-12:10PM, 2019/6/14.

1. ($\mathbf{2 5} \mathbf{~ p t s}$) You have to draw the small-signal models (with corresponding transistor numbers) to explain how you derive the following answers:
(a) Find the common-mode input resistance of v_{1} and v_{2}. ($\mathbf{5} \mathbf{~ p t s}$)
(b) Find the relationship of $v_{O 2}$ and $\left(v_{1}-v_{2}\right)$. ($\mathbf{1 0} \mathbf{~ p t s}$)
(c) Find the output resistance R_{o}. ($\mathbf{1 0} \mathbf{~ p t s}$)

2. ($\mathbf{2 5} \mathbf{~ p t s}$) Assume $\beta=100$ for all transistors and $V_{A}=100 \mathrm{~V}$ for Q 7 and Q 11 , and $V_{A}=\infty$ for all other transisitors. Determine the output resistance R_{o}.

3. ($\mathbf{2 5} \mathbf{~ p t s}$) Assume that the parameters of the transistors are $K_{n}=0.2 \mathrm{~mA} / V^{2}, V_{T N}=2 V$, and $\lambda=0.02 V^{-1}$. Determine the differential-mode voltage gain $A_{d}=v_{O 3} / v_{d}$, where $v_{d}=v_{1}-v_{2}$.

4. ($\mathbf{2 5} \mathbf{~ p t s)}$ Consider the multistage bipolar circuit in which dc base currents are negligible. Assume the transistor parameters are $\beta=120, V_{B E}(\mathrm{on})=0.7 \mathrm{~V}$, and $V_{A}=\infty$.
(a) For $v_{1}=v_{2}=-1.5 \mathrm{~V}$, find $R, R_{E 1}, R_{C}$, and $R_{E 2}$ such that $v_{O 2}=v_{O}=0, I C Q 3=0.25 \mathrm{~mA}$, and ICQ4 $=2 \mathrm{~mA} .(10 \mathrm{pts})$
(b) Assuming $C E$ acts as a short circuit, determine the differential-mode voltage gain $A_{d}=v_{o} / v_{d}$, where $v_{d}=v_{1}-v_{2} .(\mathbf{1 5} \mathbf{~ p t s})$

