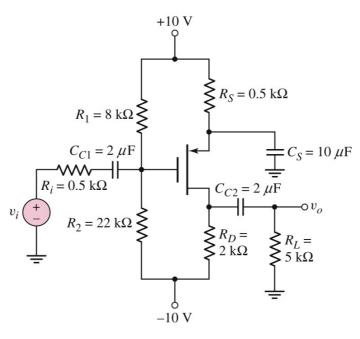

Electronics II, Exam-1, Spring 2019

Department of Communication Engineering, National Central University March 29, 2019, Prof. Dah-Chung Chang (E1-311)

1. (total 35 points: 20 points, 15 points)

The transistor parameters are $\beta = 100, V_{BE(on)} = 0.7V, V_A = \infty$.

- (a) Determine the lower corner 3dB frequency. (20%)
- (b) Determine the midband small-signal voltage gain. (15%)

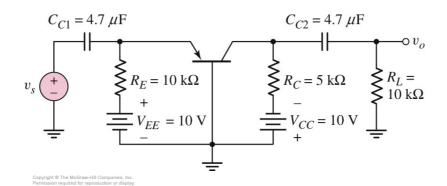


2. (total 35 points: 20 points, 15 points)

The transistor parameters are $V_{TP}=-2V, K_p=1mA/V^2, \lambda=0, C_{gs}=15\,pF,$ and $C_{gd}=3\,pF$.

- (a) Determine the upper 3dB frequency. (20%)
- (b) Find the midband voltage gain. (15%)

(Assume that the signal frequency is sufficiently high such that the outside capacitors connected to the transistor can be treated as short circuits).



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

3. (total 30 points: 15 points, 15 points)

The transistor parameters are $\beta = 100$, $V_{EB}(on) = 0.7V$, and $V_A = \infty$. Assume that a load capacitance $C_L = 15 pF$ is connected in parallel with R_L . Determine

- (a) upper 3 dB frequency
- (b) small-signal midband voltage gain.

