- 1. (10%) A power BJT must dissipate 30 W of power. The maximum allowed junction temperature is $T_{j,max} = 150^{\circ}$ C, the ambient temperature is 25° C, and the device-to-case thermal resistance is $\theta_{dev-case} = 2.8^{\circ}$ C/W.
 - (a) Find the maximum permissible thermal resistance between the case and ambient.
 - (b) Using the results of part (a), determine the junction temperature if the power dissipated in the transistor is 20 W.
- 2. (30%) Consider the class-B output stage with complementary MOSFETs. The transistor parameters are $V_{\text{TN}} = V_{\text{TP}} = 0$ and $K_n = K_p = 0.4 \text{ mA} / \text{V}^2$. Let $R_{\text{L}} = 5 \text{k}\Omega$.
 - (a) Find the maximum output voltage such that Mn remains biased in the saturation region. What are the corresponding values of i_1 and v_1 for this condition?
 - (b) Determine the conversion efficiency for a symmetrical sine-wave output signal with the peak value found in part (a).

3. (15%) Assume that the breakdown voltage of the Zener diode is $V_z = 6.8$ V. Determine v_o , i_2 , and i_z .

4. (15%) What is the voltage gain v_0/v_1 ?

5. (10%) Derive the expression for $i_{\rm D}$ in terms of $i_{\rm 1}$ and resistors.

6. (20%) Assume that the breakdown voltage of the Zener diode is $v_z = 5.6$ V. Find v_0 in terms of δ .

