Solution 22 May，2020，Exam－3，Electronics II，Spring 2020 DCChang
\＃1
Z．果考課本 P 6 6 4

$$
\alpha_{1} \cong \frac{-g_{m}^{2}}{\frac{1}{r_{03} r_{04}}+\frac{1}{r_{01} r_{02}}}
$$

$$
\begin{aligned}
& q_{m}=2 \sqrt{K_{n} \cdot I_{D Q}} \quad I_{Q Q}=I_{R E F} \\
&=2 \sqrt{K_{n} I_{R E K}} \\
& r_{03}=\gamma_{04}=\frac{1}{\lambda_{P} I_{R E F}} \\
& \gamma_{01}=\gamma_{02} \\
&=\frac{1}{\lambda_{n} I_{R E F}} \\
& A_{W} \cong \frac{-4 K_{n} I_{\text {REF }}}{\left(\lambda_{P}^{2}+\lambda_{n}^{2}\right) I_{R E F}^{2}}=\frac{-4 K_{n}}{I_{R E F}\left(\lambda_{n}^{2}+\lambda_{p}^{2}\right)}
\end{aligned}
$$

a.

$$
\begin{aligned}
& 2 V_{B E 1}=V_{B E 3}+I_{0} R_{E} \\
& V_{B E 1}=V_{T} \ln \left(\frac{I_{R E F}}{I_{S}}\right) \\
& V_{B E 3}=V_{T} \ln \left(\frac{I_{0}}{I_{S}}\right) \\
& 2 V_{T} \ln \left(\frac{I_{R E F}}{I_{S}}\right)-V_{T} \ln \left(\frac{I_{0}}{I_{S}}\right)=I_{0} R_{E} \\
& V_{T}\left[\ln \left(\frac{I_{R E F}}{I_{S}}\right)^{2}-\ln \left(\frac{I_{0}}{I_{S}}\right)\right]=I_{0} R_{E} \\
& V_{T} \ln \left(\frac{I^{2} R E F}{I_{0} I_{S}}\right)=I_{0} R_{E} \\
&
\end{aligned}
$$

b.

$$
\begin{aligned}
& V_{B E}=0.7 \mathrm{~V} \text { at } 1 \mathrm{~mA} \Rightarrow 10^{-3}=I_{S} \exp \left(\frac{0.7}{0.026}\right) \text { or } I_{S}=2.03 \times 10^{-15} \mathrm{~A} \\
& V_{B E} \text { at } 0.1 \mathrm{~mA} \Rightarrow V_{B E}=(0.026) \ln \left(\frac{0.1 \times 10^{-3}}{2.03 \times 10^{-15}}\right)=0.640 \mathrm{~V}
\end{aligned}
$$

Since $I_{0}=I_{R E F}$, then $V_{B E}=I_{0} R_{E} \Rightarrow R_{E}=\frac{0.640}{0.1}$ or $\underline{R_{E}=6.4 \mathrm{k} \Omega}$

$$
\begin{aligned}
& I_{R E F}=\left(\frac{80}{2}\right)(25)\left(V_{S G 1}-1.2\right)^{2}=\left(\frac{80}{2}\right)(4)\left(V_{S G 3}-1.2\right)^{2} \\
& V_{S G 1}+2 V_{S G 3}=10 \Rightarrow V_{S G 3}=\frac{10-V_{S G 1}}{2} \\
& \text { Then } \sqrt{\frac{25}{4}}\left(V_{S G 1}-1.2\right)=\frac{10-V_{S G 1}}{2}-1.2 \\
& 3 V_{S G 1}=6.8 \Rightarrow V_{S G 1}=2.27 \mathrm{~V} \\
& I_{R E F}=\left(\frac{80}{2}\right)(25)(2.267-1.2)^{2} \Rightarrow \underline{I_{R E F}}=I_{O}=1.14 \mathrm{~mA} \\
& V_{S D 2}(\text { sat })=V_{S G 2}+V_{T P}=2.27-1.2 \Rightarrow V_{S D 2}(\mathrm{sat})=1.07 \mathrm{~V}
\end{aligned}
$$

\#4

(1) $g_{m 1} V_{i}=V_{\pi 2}\left(\frac{1+\beta}{r_{\pi 2}}\right)+\frac{V_{o}}{r_{02}}$
(2) $\quad V_{o}\left(\frac{1}{R_{03}}+\frac{1}{r_{02}}\right)+V_{\pi 2} \cdot g_{m 2}=0$
(3) $\quad V_{\pi 2}=-\frac{V_{o}}{g_{m 2}}\left(\frac{1}{R_{03}}+\frac{1}{r_{o 2}}\right)$

Then
(1) $g_{m 1} V_{i}=-\frac{V_{O}}{g_{m 2}}\left(\frac{1}{R_{03}}+\frac{1}{r_{o 2}}\right)\left(\frac{1+\beta}{r_{x 2}}\right)+\frac{V_{0}}{r_{o 2}}$

$$
\begin{aligned}
& =-V_{o}\left(\frac{1}{R_{03}}+\frac{1}{r_{o 2}}\right)\left(\frac{1+\beta}{\beta}\right)+\frac{V_{o}}{r_{o 2}} \\
& \approx-\frac{V_{o}}{R_{03}}\left(\frac{1+\beta}{\beta}\right) \\
\frac{V_{o}}{V_{i}} & =-g_{m 1} R_{o 3}\left(\frac{\beta}{1+\beta}\right)
\end{aligned}
$$

From Equation (10.20) $R_{03} \approx \beta r_{03}$
So

$$
\begin{gathered}
A_{v}=\frac{V_{o}}{V_{i}}=\frac{-g_{m 1} r_{o 3} \beta^{2}}{1+\beta} \quad g_{m}=\frac{0.25}{0.026}=9.615 \mathrm{~mA} / \mathrm{V} \\
r_{o 3}=\frac{80}{0.25}=320 \mathrm{~K} \\
A_{v}=\frac{-(9.615)(320)(120)^{2}}{121}=-366,165
\end{gathered}
$$

