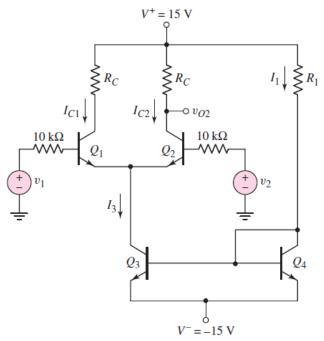
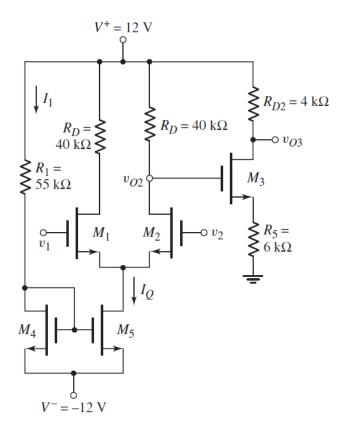

Electronics II, Exam-4, Spring 2020

Department of Communication Engineering, National Central University June 12, 2020, Prof. Dah-Chung Chang (E1-311)


- 1. (25%) The transistor parameters are β = 180 , $V_{\rm BE(on)}$ = 0.7 V (except for Q4), V_A = ∞ for Q1 and Q2, and V_A = 100V for Q3 and Q4.
 - (a) Assume $R_1 = 38.6 \text{ k}\Omega$, determine R_2 such that $I_0 = 140 \mu\text{A}$. (5%)
 - (b) Determine the common-mode input resistance. (10%)
 - (c) For $R_C = 40 \text{ k}\Omega$, determine the common-mode voltage gain. (10%)


- 2. (30%) The transistor parameters are $\beta = 100$ and $V_A = \infty$. The bias currents in the transistors are indicated in the figure.
 - (a) Determine the input resistance. (5%)
 - (b) Determine the output resistance. (10%)
 - (c) Find the small-signal voltage gain. (15%)

3. (20%) The transistor parameters are $\beta = 100$ and $V_{BE(on)} = 0.7$ V. The Early voltage is $V_A = \infty$ for Q1 and Q2, and is $V_A = 50$ V for Q3 and Q4. Assume $R_1 = 73$ k Ω and $R_C = 28.5$ k Ω . Find CMRR(dB) for a one-sided output at V_{O2} .

4. (25%) Assume that the parameters of the transistors are $K_n = 0.2mA/V^2$, $V_{TN} = 2V$, and $\lambda = 0.02V^{-1}$. Determine the differential-mode voltage gain $A_d = v_{O3}/v_d$, where $v_d = v_1 - v_2$.

