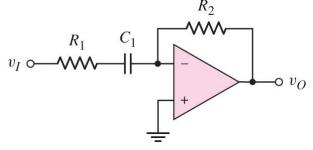

Electronics II, Exam-2, Spring 2021

Department of Communication Engineering, National Central University April 30, 2021, Prof. Dah-Chung Chang (E1-311)

- 1. (30%) Consider the following instrumentation amplifier.
 - (a) Assume that $R_4 / R_3 = R_6 / R_5$. Find v_0 in relation of v_{I1} and v_{I2} . (10%)
 - (b) Assume that $R_2 / R_1 = 2$, $R_4 / R_3 = 10$, and $R_6 / R_5 = 11$. Determine CMRR(dB). (20%)



- 2. (15%) Consider the voltage reference circuit, using a Zener diode with a breakdown voltage of 5.6V. We design the circuit to produce an output voltage of 12.0 V with the input voltage of 15.0V and the Zener diode current $I_z = 2mA$.
 - (a) Find R_1 . (5%)
 - (b) Let the current of R_2 be 2mA. Find R_2 and R_3 . (5%)
 - (c) If $R_L = 6K\Omega$, find R_4 such that the op-amp has no output current. (5%)

- 3. (30%) The following circuit is a first-order high-pass active filter. Let ω be the frequency of the input signal.
 - (a) What is the voltage transfer function expressed in terms of ω ? (10%)
 - (b) What is the voltage gain as the frequency becomes extremely large? (5%)
 - (c) At what frequency is the magnitude of the gain a factor of $\sqrt{2}$ less than the maximum voltage gain as obtained in (b)? (15%)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- 4. (25%) The parameters are $V_{DD}=10V$ and $R_L=20\Omega$. The transistors are matched, and the transistor parameters are $K=0.20A/V^2$ and $|V_T|=1V$. The quiescent drain current is to be 20% of the load current when $v_Q=5V$.
 - (a) Find the voltage value of V_{BB} . (10%)
 - (b) Find the value of v_{SGp} when $v_O = 5V$. (10%)
 - (c) Find the input voltage when $v_0 = 5V$. (5%)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

