Electronics II, Exam-3, Spring 2021
Department of Communication Engineering, National Central University
11th June, 2021, Prof. Dah-Chung Chang (E1-311)

Note: The scientific calculator is allowed in all Electronics II exams.

1. (35\%) In the circuit shown in Fig. 1, the active load circuit is replaced by a current source in which the PNP transistors Q_{2} and Q_{3} are matched. The common-emitter current gain of transistors is denoted as β. Suppose that $I_{\text {REF }}$ is obtained from another ideal current source.
(a) Derive the exact relationship between $i_{E 1}$ and $i_{C 2}$, and explain in what condition we have $i_{E 1} \approx i_{C 2}$. (10%)
(b) To find the output resistance of the current source looking into the collector of Q_{1}, we may treat the emitter terminal of Q_{1} as virtual ground in small-signal analysis for simplicity. Draw the small-signal equivalent circuit and write out the resistance looking into the base and collector of Q_{3} from the emitter terminal of Q_{1}, and explain the reason. (10\%)
(c) Draw the small-signal equivalent circuit of the current source and show that the output resistance $R_{C 1} \approx \beta r_{\text {o1 }} / 2$, using the approximation obtained in (a) and (b). (10\%)
(d) Assume that $\beta=250$ for all transistors, and that $V_{\mathrm{AN}}=150 \mathrm{~V}, V_{\mathrm{AP}}=120 \mathrm{~V}$, and $I_{\mathrm{REF}}=1 \mathrm{~mA}$. Determine the small-signal voltage gain $v_{o} / v_{I} .(5 \%)$

Fig. 1
2. (30%) The circuit in Fig. 2 is a two-transistor PMOS current mirror. Based on the reference current $I_{\text {REF }}$, we want to design the PMOS transistor M_{3} and to evaluate the maximum output current I_{O} for a given load resistance R.
(a) Write out the circuit equations that are required to obtain $I_{\text {REF }}$, and explain the reason why you construct those simultaneous equations and the processes how to solve for $I_{\text {REF }}$. (10%)
(b) Assume that the circuit and transistor parameters of M_{1} and M_{2} are $V^{+}=3 \mathrm{~V}$, $V^{-}=-3 \mathrm{~V}, V_{T P 1}=V_{T P 2}=-1 \mathrm{~V}, K_{p 1}=1 \mathrm{~mA} / \mathrm{V}^{2}$, and $K_{p 2}=9 \mathrm{~mA} / \mathrm{V}^{2}$. Suppose that $R=12 \mathrm{k} \Omega$, determine the maximum value of I_{o} such that M_{3} remains biased in the saturation region. (15%)
(c) Determine the ratio parameters $(\mathrm{W} / \mathrm{L})_{3}$ of M_{3} given that $k_{p}^{\prime}=0.1 \mathrm{~mA} / \mathrm{V}^{2}$ and $I_{o}=0.2 \mathrm{~mA}$. (5%)

Fig. 2
3. (35\%) Consider the multi-transistor current source in Fig. 3. Assume that M_{1}, M_{2}, and M_{3} are identical except for their geometry ratios, and the circuit and transistor parameters are $V^{+}=5 \mathrm{~V}, V_{T N}=1 \mathrm{~V}, k_{n}^{\prime}=80 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $\lambda=0$.
(a) Let $I_{\text {REF }}=0.1 \mathrm{~mA}$ and the geometry ratio of M_{3} be $(\mathrm{W} / \mathrm{L})_{3}=4$. Assume that M_{1} and M_{2} have the same W / L geometry ratio. Determine the ratio and explain how to use this assumption to obtain that value. (10\%)
(b) Suppose that the transistor parameters of M_{4} is the same as M_{1} except that $\lambda_{4}=0.05 \mathrm{~V}^{-1}$. Determine the geometry ratio of M_{4} for at least $I_{O 1}=0.5 \mathrm{~mA}$ as M_{4} remains biased in the saturation region. (10%)
(c) Assume that the transistor parameters of M_{5} is the same as M_{1} except that $\lambda_{5}=0.01 \mathrm{~V}^{-1}$. What is the maximum value of R_{S} for $I_{O 2}=40 \mu \mathrm{~A} ?(5 \%)$
(d) Let $R_{S}=10 \mathrm{k} \Omega$. Determine the geometry ratio of M_{5} for at least $I_{O 2}=40 \mu \mathrm{~A}$ as M_{5} remains biased in the saturation region, and determine the output resistance $R_{D 5}$ looking into the drain terminal of M_{5}. (10%)

Fig. 3

