Note: The scientific calculator is allowed in all Electronics II exams.

- 1. (35%) In the circuit shown in Fig. 1, the active load circuit is replaced by a current source in which the PNP transistors Q_2 and Q_3 are matched. The common-emitter current gain of transistors is denoted as β . Suppose that I_{REF} is obtained from another ideal current source.
 - (a) Derive the exact relationship between i_{E1} and i_{C2} , and explain in what condition we have $i_{E1} \approx i_{C2}$. (10%)
 - (b) To find the output resistance of the current source looking into the collector of Q_1 , we may treat the emitter terminal of Q_1 as virtual ground in small-signal analysis for simplicity. Draw the small-signal equivalent circuit and write out the resistance looking into the base and collector of Q_3 from the emitter terminal of Q_1 , and explain the reason. (10%)
 - (c) Draw the small-signal equivalent circuit of the current source and show that the output resistance $R_{c1} \approx \beta r_{o1}/2$, using the approximation obtained in (a) and (b). (10%)
 - (d) Assume that $\beta = 250$ for all transistors, and that $V_{AN} = 150V$, $V_{AP} = 120V$, and $I_{REF} = 1 \text{ mA}$. Determine the small-signal voltage gain v_0 / v_1 . (5%)

- 2. (30%) The circuit in Fig. 2 is a two-transistor PMOS current mirror. Based on the reference current I_{REF} , we want to design the PMOS transistor M_3 and to evaluate the maximum output current I_o for a given load resistance *R*.
 - (a) Write out the circuit equations that are required to obtain I_{REF} , and explain the reason why you construct those simultaneous equations and the processes how to solve for I_{REF} . (10%)
 - (b) Assume that the circuit and transistor parameters of M_1 and M_2 are $V^+ = 3V$, $V^- = -3V$, $V_{TP1} = V_{TP2} = -1V$, $K_{p1} = 1\text{mA}/\text{V}^2$, and $K_{p2} = 9\text{mA}/\text{V}^2$. Suppose that $R = 12\text{k}\Omega$, determine the maximum value of I_0 such that M_3 remains biased in the saturation region. (15%)
 - (c) Determine the ratio parameters $(W/L)_3$ of M_3 given that $k'_p = 0.1 \text{ mA}/\text{V}^2$ and $I_o = 0.2 \text{ mA} \cdot (5\%)$

3. (35%) Consider the multi-transistor current source in Fig. 3. Assume that M_1 , M_2 , and M_3 are identical except for their geometry ratios, and the circuit and transistor parameters are

 $V^+ = 5V$, $V_{TN} = 1V$, $k'_n = 80 \mu A / V^2$, and $\lambda = 0$.

- (a) Let $I_{\text{REF}} = 0.1 \text{ mA}$ and the geometry ratio of M_3 be $(W/L)_3 = 4$. Assume that M_1 and M_2 have the same W/L geometry ratio. Determine the ratio and explain how to use this assumption to obtain that value. (10%)
- (b) Suppose that the transistor parameters of M_4 is the same as M_1 except that $\lambda_4 = 0.05 \text{ V}^{-1}$. Determine the geometry ratio of M_4 for at least $I_{01} = 0.5 \text{ mA}$ as M_4 remains biased in the saturation region. (10%)
- (c) Assume that the transistor parameters of M_5 is the same as M_1 except that $\lambda_5 = 0.01 \text{ V}^{-1}$. What is the maximum value of R_s for $I_{02} = 40 \mu \text{A}$? (5%)
- (d) Let $R_s = 10 \text{k}\Omega$. Determine the geometry ratio of M_5 for at least $I_{02} = 40 \mu \text{A}$ as M_5 remains biased in the saturation region, and determine the output resistance R_{D5} looking into the drain terminal of M_5 . (10%)

Fig. 3