Electronics II, Exam-4, Spring 2021 Department of Communication Engineering, National Central University 25th June, 2021, Prof. Dah-Chung Chang (E1-311)

Note: The scientific calculator is allowed in all Electronics II exams.

1. (20%) Suppose that the capacitor C_E in Fig.1 is short in the analysis of small-signal equivalent circuit. Derive the expression of the differential-mode output resistance R_o looking from v_o in terms of transistors' small-signal parameters such as $g_{m1}, g_{m2}, ..., r_{\pi 1}, r_{\pi 2}, ..., \beta_1, \beta_2, ..., r_{o1}, r_{o2}, ..., r_{o6}$ and the resistances as shown in Fig.1. (about 3-4% for backward pursuing each transistor)

Note: You need to write out complete analysis processes for every steps with sketching necessary small-signal equivalent circuit for explanation)

Fig. 1

2. (40%) The transistor parameters for the circuit in Fig. 2 are that

 M_1 and M_2 : $K_n = 0.2 \text{ mA/V}^2$, $V_{TN} = 0.8 \text{ V}$, and $\lambda = 0$;

 Q_3 and Q_4 : $V_{BE(\text{on})} = 0.7 \text{ V}, V_{CE(\text{sat})} = 0.2 \text{ V}, \beta = 250, V_{A3} = \infty$, and $V_{A4} = 90 \text{ V}.$

Suppose that the output resistance of the current source is $R_0 = 200 \text{ k}\Omega$. Design the circuit such that $v_{02} = 2 \text{ V}$, $I_{C3} = 0.25 \text{ mA}$, and $I_{C4} = 2 \text{ mA}$.

- (a) Determine the maximum value of the common-mode input voltage for v_1 and v_2 . (5%)
- (b) Determine R_1 and R_2 if we make v_0 as close to zero as possible. (5%)
- (c) Sketching the small-signal equivalent circuit, derive the expression of the voltage gain v_o / v_{o2} and determine the value. (10%)
- (d) Sketching the small-signal equivalent circuit, derive the expression of the common-mode voltage gain $A_{cm1} = v_{O2} / v_1$. (10%)
- (e) Determine the value of the overall $CMRR_{dB}$. (5%)
- (f) Determine the output resistance looking from v_0 . (5%)

Fig. 2

- 3. (40%) The differential amplifier in Fig. 3(a) has a pair of NMOS transistors M_3 and M_4 as input devices, a pair of PMOS transistors M_1 and M_2 as an active load in a current mirror configuration, and a pair of NMOS transistors M_5 and M_6 connected as the current source biased with I_Q . Assume that all transistor characteristics are identical, that is, $K_n = K_p$, $\lambda_n = \lambda_p$, and $V_{TP} = -V_{TN}$. Let g_m and r_o denote the transconductance and output resistance of M_1 , respectively. Because the active load circuit is not symmetrical, we can consider the small-signal equivalent half-circuit as split in Fig. 3(b) and let $i_d \approx Gv_1$. Follow the next steps to analyze the differential-mode gain, common-mode gain, and CMRR.
 - (a) Sketching the small-signal equivalent circuit, determine the equivalent resistance R_{im} looking into the drain terminal of M_1 . (5%)
 - (b) Considering the case of $v_1 = -v_2 = v_d / 2$ for the differential mode, what are R_o , Gv_2 , V_{sg2} , R_{om} , and the differential-mode voltage gain $A_d = v_0 / v_d$. (10%)
 - (c) Considering the case of $v_1 = v_2 = v_{cm}$ for the common mode, show that the Norton equivalent circuit model looking into the drain terminal of M_4 is $R_o \approx g_m r_o^2$ and $Gv_2 \approx v_{cm} / r_o$. (10%)
 - (d) Sketching the small-signal equivalent circuit, derive the expression of the common-mode voltage gain $A_{cm} = v_o / v_{cm}$ with the approximation $1 g_m \left(\frac{1}{g_m} \| r_o\right) \approx \frac{1}{g_m r_o}$. (10%)
 - (e) Derive the approximate expression of CMRR in terms of K_n , λ_n , and I_Q . (5%)

Fig. 3(a)

Fig. 3(b)