Electronics II, Exam-4, Spring 2021

Department of Communication Engineering, National Central University
25th June, 2021, Prof. Dah-Chung Chang (E1-311)
Note: The scientific calculator is allowed in all Electronics II exams.

1. (20%) Suppose that the capacitor C_{E} in Fig. 1 is short in the analysis of small-signal equivalent circuit. Derive the expression of the differential-mode output resistance R_{O} looking from v_{O} in terms of transistors' small-signal parameters such as $g_{m 1}, g_{m 2}, \ldots, r_{\pi 1}, r_{\pi 2}, \ldots, \beta_{1}, \beta_{2}, \ldots, r_{o 1}, r_{o 2}, \ldots, r_{o 6}$ and the resistances as shown in Fig.1. (about 3-4\% for backward pursuing each transistor)

Note: You need to write out complete analysis processes for every steps with sketching necessary small-signal equivalent circuit for explanation)

Fig. 1
2. (40\%) The transistor parameters for the circuit in Fig. 2 are that
M_{1} and $M_{2}: K_{n}=0.2 \mathrm{~mA} / \mathrm{V}^{2}, V_{T N}=0.8 \mathrm{~V}$, and $\lambda=0$;
Q_{3} and $Q_{4}: V_{B E(\text { on })}=0.7 \mathrm{~V}, V_{C E(\text { sat })}=0.2 \mathrm{~V}, \beta=250, V_{A 3}=\infty$, and $V_{A 4}=90 \mathrm{~V}$.
Suppose that the output resistance of the current source is $R_{\mathrm{o}}=200 \mathrm{k} \Omega$. Design the circuit such that $v_{O 2}=2 \mathrm{~V}, I_{C 3}=0.25 \mathrm{~mA}$, and $I_{C 4}=2 \mathrm{~mA}$.
(a) Determine the maximum value of the common-mode input voltage for v_{1} and v_{2}.(5\%)
(b) Determine R_{1} and R_{2} if we make v_{o} as close to zero as possible. (5\%)
(c) Sketching the small-signal equivalent circuit, derive the expression of the voltage gain $v_{o} / v_{o 2}$ and determine the value. (10%)
(d) Sketching the small-signal equivalent circuit, derive the expression of the common-mode voltage gain $A_{c m 1}=v_{O 2} / v_{1} .(10 \%)$
(e) Determine the value of the overall $\mathrm{CMRR}_{\mathrm{dB}}$. (5\%)
(f) Determine the output resistance looking from v_{o}. (5%)

Fig. 2
3. (40\%) The differential amplifier in Fig. 3(a) has a pair of NMOS transistors M_{3} and M_{4} as input devices, a pair of PMOS transistors M_{1} and M_{2} as an active load in a current mirror configuration, and a pair of NMOS transistors M_{5} and M_{6} connected as the current source biased with I_{Q}. Assume that all transistor characteristics are identical, that is, $K_{n}=K_{p}, \lambda_{n}=\lambda_{p}$, and $V_{T P}=-V_{T N}$. Let g_{m} and r_{o} denote the transconductance and output resistance of M_{1}, respectively. Because the active load circuit is not symmetrical, we can consider the small-signal equivalent half-circuit as split in Fig. 3(b) and let $i_{d} \approx G v_{1}$. Follow the next steps to analyze the differential-mode gain, common-mode gain, and CMRR.
(a) Sketching the small-signal equivalent circuit, determine the equivalent resistance $R_{i m}$ looking into the drain terminal of M_{1}. (5%)
(b) Considering the case of $v_{1}=-v_{2}=v_{d} / 2$ for the differential mode, what are $R_{o}, G v_{2}$, $V_{s g 2}, R_{o m}$, and the differential-mode voltage gain $A_{d}=v_{o} / v_{d}$. (10\%)
(c) Considering the case of $v_{1}=v_{2}=v_{c m}$ for the common mode, show that the Norton equivalent circuit model looking into the drain terminal of M_{4} is $R_{o} \approx g_{m} r_{o}^{2}$ and $G v_{2} \approx v_{c m} / r_{o} .(10 \%)$
(d) Sketching the small-signal equivalent circuit, derive the expression of the common-mode voltage gain $A_{c m}=v_{o} / v_{c m}$ with the approximation $1-g_{m}\left(\frac{1}{g_{m}} \| r_{o}\right) \approx \frac{1}{g_{m} r_{o}} \cdot(10 \%)$
(e) Derive the approximate expression of CMRR in terms of $K_{\mathrm{n}}, \lambda_{\mathrm{n}}$, and I_{Q}. (5\%)

Fig. 3(a)

Fig. 3(b)

