1. (20%) Assume that $V_{CC} = 30$ V and a power BJT is operating with an average collector current of $I_c = 1.4$ A. Consider that the power BJT is able to be fixed onto a heat sink. The thermal resistance parameters related to the heat sink are $\theta_{case-snk} = 1^{\circ}$ C/W, $\theta_{snk-amb} = 3^{\circ}$ C/W, and $\theta_{case-amb} = 43^{\circ}$ C/W. Suppose that the BJT junction temperature is 150°C and the ambient temperature is 24° C when the power BJT works for $R_L = 20\Omega$ without the heat sink. Determine the minimum R_L with which the power BJT can work at the same temperature when the heat sink is used.

- 2. (30%) Consider the MOSFET class-AB output stage. The circuit parameters are $V_{DD} = 15V$ and $R_L = 25\Omega$. The transistors are matched with parameters $K = 0.25 \text{ A/ V}^2$ and $|V_T| = 1.2V$. The quiescent drain currents are to be 20 percent of the load current when $v_0 = 8V$.
 - (a) Determine V_{BB} . (15%)
 - (b) Find the input voltage v_1 and explain the operating status of transistors M_n and M_p when $v_0 = -12$ V. (15%)

- 3. (25%)
 - (a) Find the voltage transfer function of the right circuit in terms of the input signal frequency f. (10%)
 - (b) Is the circuit a lowpass or a highpass filter and why? (5%)
 - (c) Find the 3dB corner frequency. (10%)

4. (10%) Find the voltage gain v_o / v_I .

- 5. (15%)
 - (a) Find the gain v_0 / v_{cm} . (10%)
 - (b) On what condition is the gain to be zero? (5%)

