1. (25%) Assume all transistors are matched. Let $I_{REF} = 0.2mA$, $K_n = 0.2mA / V^2$, $V_{TN} = 1V$, and $\lambda = 0.02V^{-1}$. Determine the output resistance looking into the drain of M_6 .

- 2. (25%) The transistor parameters are $V_{TP} = -0.4 \text{ V}, \quad k'_p = 60 \mu \text{A/V}^2, \text{ and } \lambda = 0.$ The width-to-length ratios are $(W/L)_1 = 25, (W/L)_2 = 15$, and $(W/L)_3 = 5.$
 - (a) Determine I_O , I_{REF} , V_{SGI} , and V_{SG3} . (20%)
 - (b) What is the largest value of R such that M_2 remains biased in the saturation region? (5%)

- 3. (25%) The transistor parameters are $\beta = 80$, $V_{BE}(on) = 0.7V$, and $V_A = \infty$.
 - (a) Derive the expression for I_o in terms of I_{REF} , β , and $R_2 . (15\%)$
 - (b) For $R_2 = 10k\Omega$, $I_0 = 0.7mA$ and $V^+ = 10V$, find R_1 . (10%)

