Electronics II, Exam-4, Spring 2022
 Department of Communication Engineering, National Central University June 17, 2022, Dr. Dah-Chung Chang (E1-311)

1. (30%) Suppose that the output resistance of the current source is R_{o}, the transconductance of the MOS transistors is g_{m}, and the common-emitter current gain of the BJT transistors is β.
(a) Sketch the small-signal equivalent circuit and derive the expression of the voltage gain $v_{O} / v_{O 2} .(10 \%)$
(b) Sketch the small-signal equivalent circuit and derive the expression of the commonmode voltage gain $A_{c m 1}=v_{O 2} / v_{1} .(10 \%)$
(c) Derive the overall $\mathrm{CMRR}_{d B} \cdot(5 \%)$
(d) Sketch the small-signal equivalent circuit and derive the output resistance looking from $v_{o} .(5 \%)$

2. (15\%) The diff-amp has a three-transistor active load circuit and a Darlington pair configuration connected to the output. Determine the bias current $I_{Q 1}$ in terms of I_{Q} such that the diff-amp dc currents are balanced.

3. (20\%) The output stage is a Darlington pair emitter-follower configuration. Assume $\beta=120$ for all npn transistors and $\beta=90$ for all pnp transistors. Let $V_{A 7}=60 \mathrm{~V}$ for $Q_{7}, V_{A 11}=120 \mathrm{~V}$ for Q_{11}, and $V_{A}=\infty$ for all other transistors. Determine the output resistance Ro.

4. (35\%) Consider the following BJT operational amplifier circuit, in which the transistor parameters are: $\beta=120, V_{B E}($ on $)=0.7 V$ (except for Q_{8} and $\left.\mathrm{Q}_{9}\right)$, and $V_{A}=\infty$. We have $I_{Q}=0.4 \mathrm{~mA}$.
(a) Find the dc output voltage V_{o}. (10%)
(b) Find the input resistances $R_{i 2}$ and $R_{i 3}$. (10\%)
(c) Determine the overall differential-mode voltage gain $A_{d}=v_{o} /\left(v_{1}-v_{2}\right) \cdot(15 \%)$

