- 1. (30%) Suppose that the output resistance of the current source is R_0 , the transconductance of the MOS transistors is g_m , and the common-emitter current gain of the BJT transistors is β .
 - (a) Sketch the small-signal equivalent circuit and derive the expression of the voltage gain v_0 / v_{02} . (10%)
 - (b) Sketch the small-signal equivalent circuit and derive the expression of the commonmode voltage gain $A_{cm1} = v_{O2} / v_1$. (10%)
 - (c) Derive the overall CMRR_{dB} . (5%)
 - (d) Sketch the small-signal equivalent circuit and derive the output resistance looking from v_0 . (5%)

2. (15%) The diff-amp has a three-transistor active load circuit and a Darlington pair configuration connected to the output. Determine the bias current I_{Q1} in terms of I_Q such that the diff-amp dc currents are balanced.

3. (20%) The output stage is a Darlington pair emitter-follower configuration. Assume $\beta = 120$ for all npn transistors and $\beta = 90$ for all pnp transistors. Let $V_{A7} = 60$ V for Q_7 , $V_{A11} = 120$ V for Q_{11} , and $V_A = \infty$ for all other transistors. Determine the output resistance *Ro*.

- 4. (35%) Consider the following BJT operational amplifier circuit, in which the transistor parameters are: $\beta = 120$, $V_{BE}(\text{on}) = 0.7V$ (except for Q₈ and Q₉), and $V_A = \infty$. We have $I_Q = 0.4mA$.
 - (a) Find the dc output voltage V_0 . (10%)
 - (b) Find the input resistances R_{i2} and R_{i3} . (10%)
 - (c) Determine the overall differential-mode voltage gain $A_d = v_o / (v_1 v_2) \cdot (15\%)$

