1. $(25 \%)$ The parameters of the circuit are: $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{V}^{-}=0, I_{\text {REF }}=0.7 m A$, and $I_{o}=25 \mu \mathrm{~A}$ at $\mathrm{V}_{C 2}=1 \mathrm{~V}$. The transistor parameters are: $\beta=150$, $\mathrm{V}_{B E 1}(\mathrm{on})=0.7 \mathrm{~V}$, and $\mathrm{V}_{A}=100 \mathrm{~V}$. Determine the change in $I_{o}$ when $\mathrm{V}_{C 2}$ changes from 1 V to 4 V .

2. (25\%) The bias voltages of the circuit are $\mathrm{V}^{+}=1.8 \mathrm{~V}$ and $\mathrm{V}^{-}=-1.8 \mathrm{~V}$, and the transistor parameters are $\mathrm{V}_{T N}=0.4 \mathrm{~V}, k_{n}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $\lambda=0$. Find those $W / L$ ratios for three transistors such that $I_{\text {REF }}=0.5 m A$ and $I_{\mathrm{O}}=0.1 \mathrm{~mA}$, and that $M_{2}$ remains biased in the saturation region for $\mathrm{V}_{D S 2} \geq 0.4 \mathrm{~V}$.

3. (25\%) The parameters of the transistors are $V_{T N}=0.6 \mathrm{~V}$, $V_{T P}=-0.6 \mathrm{~V}, k_{n}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{p}^{\prime}=60 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $\lambda_{n}=\lambda_{p}=$ $0.02 \mathrm{~V}^{-1}$. The width-to-length ratios are shown in the figure. The value of $V_{G S Q}$ is such that $I_{D 1}=100 \mu \mathrm{~A}$, and $M_{1}$ and $M_{2}$ are biased in the saturation region. Determine the small-signal voltage gain $A_{\nu}=v_{o} / v_{i}$.

4. (25\%) The bias voltage of the MOSFET amplifier with active load is $\mathrm{V}^{+}=3 \mathrm{~V}$. The transistor parameters are $V_{T N}=0.5 \mathrm{~V}, V_{T P}=-0.5 \mathrm{~V}, k_{n}^{\prime}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, k_{p}^{\prime}=60 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $\lambda_{n}=\lambda_{p}=0.02 \mathrm{~V}^{-1}$. The quiescent values are $V_{o}=1.5 \mathrm{~V}$ and $V_{I}=1.2 \mathrm{~V}$.
(a) Find the three transistor $W / L$ ratios, such that $I_{\text {REF }}=I_{O}=100 \mu \mathrm{~A}$. Assume $M_{1}$ and $M_{2}$ are matched. ( $15 \%$ )
(b) Determine the small-signal voltage gain $A_{v}=v_{o} / v_{i}$. (10\%)

