1. (25%) The parameters of the circuit are: $V^+=5V$, $V^-=0$, $I_{REF}=0.7mA$, and $I_o=25\mu A$ at $V_{C2}=1V$. The transistor parameters are: $\beta = 150$, $V_{BE1}(on) = 0.7$ V, and $V_A = 100$ V. Determine the change in I_o when V_{C2} changes from 1 V to 4 V.

2. (25%) The bias voltages of the circuit are $V^+=1.8V$ and $V^-=-1.8V$, and the transistor parameters are $V_{TN} = 0.4 \text{ V}$, $k'_n = 100 \mu \text{A/V}^2$, and $\lambda = 0$. Find those *W/L* ratios for three transistors such that $I_{\text{REF}} = 0.5mA$ and $I_0 = 0.1mA$, and that M_2 remains biased in the saturation region for $V_{DS2} \ge 0.4 \text{ V}$.

3. (25%) The parameters of the transistors are $V_{TN} = 0.6$ V, $V_{TP} = -0.6$ V, $k'_n = 100\mu$ A/V², $k'_p = 60\mu$ A/V², and $\lambda_n = \lambda_p = 0.02$ V⁻¹. The width-to-length ratios are shown in the figure. The value of V_{GSQ} is such that $I_{D1} = 100\mu$ A, and M_1 and M_2 are biased in the saturation region. Determine the small-signal voltage gain $A_v = v_o/v_i$.

- 4. (25%) The bias voltage of the MOSFET amplifier with active load is V⁺ = 3 V. The transistor parameters are $V_{TN} = 0.5$ V, $V_{TP} = -0.5$ V, $k'_n = 100 \mu A/V^2$, $k'_p = 60 \mu A/V^2$, and $\lambda_n = \lambda_p = 0.02$ V⁻¹. The quiescent values are $V_o = 1.5$ V and $V_I = 1.2$ V.
 - (a) Find the three transistor *W/L* ratios, such that $I_{\text{REF}} = I_o = 100 \mu A$. Assume M_1 and M_2 are matched. (15%)
 - (b) Determine the small-signal voltage gain $A_v = v_o/v_i$. (10%)

