Electronics II, Exam-4, Spring 2023

Department of Communication Engineering, National Central University June 9, 2023, Prof. Dah-Chung Chang (E1-311)

- 1. (25%) The transistor parameters are: $\beta = 100$, V_{BE} (on) = 0.7 V, the Early voltage $V_A = \infty$ for Q_1 and Q_2 , and $V_A = 50$ V for Q_3 and Q_4 .
 - (a) Find the resistor values R_1 and R_C such that $I_3 = 0.4mA$ and $V_{CE1} = V_{CE2} = 10 \text{V}$. (10%)
 - (b) Find CMRR in dB for a one-sided output at v_{o2} . (15%)

2. (25%) The PMOS parameters are $K_p = 80 \mu \text{A/V}^2$, $\lambda_p = 0.02 \, \text{V}^{-1}$, $V_{TP} = -2 \, \text{V}$. The NMOS parameters are $K_n = 80 \, \mu \text{A/V}^2$, $\lambda_n = 0.015 \, \text{V}^{-1}$, $V_{TN} = +2 \, \text{V}$. Determine the open-circuit differential-mode voltage gain.

3. (25%) The transistor parameters are $\beta=120$, V_{BE} (on) = 0.7 V, and $V_A=\infty$. Assume that $R=20k\Omega$, $R_{E1}=R_C=17.2k\Omega$, $R_{E2}=2.5k\Omega$, and the output resistance of the current source is $200k\Omega$. Determine the differential-mode voltage gain $A_d=v_o/(v_1-v_2)$. (Note: The base current for a transistor can be neglected and C_E acts as a short circuit in analyzing the small signal circuit.)

4. (25%) The circuit parameters are V⁺= 3 V, V⁻= -3 V, and $I_Q=0.4m$ A. The NPN transistor parameters are $\beta=180, V_{BE}(\text{on})=0.7\text{V}$, and $V_{AN}=120\text{V}$, and the PNP transistor parameters are $\beta=120, V_{BE}(\text{on})=0.7\text{V}$, and $V_{AP}=80\text{V}$. Determine the one-sided differential-mode gain $A_{d2}=v_{O2}/v_d$.

