1. (25%) The transistor parameters are: $\beta=100, \mathrm{~V}_{B E}(\mathrm{on})=0.7 \mathrm{~V}$, the Early voltage $\mathrm{V}_{A}=\infty$ for Q_{1} and Q_{2}, and $\mathrm{V}_{A}=50 \mathrm{~V}$ for Q_{3} and Q_{4}.
(a) Find the resistor values R_{1} and R_{C} such that $I_{3}=0.4 m A$ and $V_{C E 1}=V_{C E 2}=10 \mathrm{~V}$. (10\%)
(b) Find CMRR in dB for a one-sided output at $v_{\mathrm{O} 2} \cdot(15 \%)$

2. (25\%) The PMOS parameters are $K_{p}=80 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda_{p}=0.02 \mathrm{~V}^{-1}, V_{T P}=-2 \mathrm{~V}$. The NMOS parameters are $K_{n}=80 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda_{n}=0.015 \mathrm{~V}^{-1}, V_{T N}=+2 \mathrm{~V}$. Determine the open-circuit differential-mode voltage gain.

3. (25\%) The transistor parameters are $\beta=120, \mathrm{~V}_{B E}(\mathrm{on})=0.7 \mathrm{~V}$, and $\mathrm{V}_{A}=\infty$. Assume that $R=20 \mathrm{k} \Omega, R_{E 1}=R_{C}=17.2 \mathrm{k} \Omega, R_{E 2}=2.5 \mathrm{k} \Omega$, and the output resistance of the current source is $200 k \Omega$. Determine the differential-mode voltage gain $A_{d}=v_{o} /\left(v_{1}-v_{2}\right)$. (Note: The base current for a transistor can be neglected and C_{E} acts as a short circuit in analyzing the small signal circuit.)

4. (25\%) The circuit parameters are $\mathrm{V}^{+}=3 \mathrm{~V}, \mathrm{~V}^{-}=-3 \mathrm{~V}$, and $I_{Q}=0.4 m \mathrm{~A}$. The NPN transistor parameters are $\beta=180, V_{B E}(\mathrm{on})=0.7 \mathrm{~V}$, and $V_{A N}=120 \mathrm{~V}$, and the PNP transistor parameters are $\beta=120, V_{B E}(\mathrm{on})=0.7 \mathrm{~V}$, and $V_{A P}=80 \mathrm{~V}$. Determine the one-sided differential-mode gain $A_{d 2}=v_{O 2} / v_{d}$.

