Electronics II, Midterm, Spring 2024

Department of Communication Engineering, National Central University March 29, 2024, Prof. Dah-Chung Chang (E1-311)

1. (25%) Let $K_{n}=0.5 m A / V^{2}, V_{T N}=2 V$, and $\lambda=0$.
(a) Determine the maximum value of C_{L} such that the bandwidth is at least $5 \mathrm{MHz} .(15 \%)$
(b) What is the magnitude of the small-signal midband voltage gain? (10%)

combut row
2. (25%) Consider the circuit as shown below.
(a) Derive the transfer function $T(s)=V_{o}(s) / V_{i}(s)$, assuming $\lambda=0$ for the transistor. Determine the expression for the time constant associated with the input portion of the circuit. (15%)
(b) Determine the expression for the time constant associated with the output portion of the circuit. You need to explain the equivalent resistance in the time constant, or you will not get the score. (10\%)

3. (25%) Assume the emitter bypass capacitor is very large, and the transistor parameters are: $\beta=100, V_{B E(o n)}=0.7 \mathrm{~V}, V_{A}=\infty, C_{\mu}=2 \mathrm{pF}$, and $f_{T}=400 \mathrm{MHz}$.
Determine the lower and upper 3 dB frequencies for the small-signal voltage gain.

4. (25\%) Assume that $C_{C 1}, C_{E}$, and $C_{C 2}$ acts as short circuits in this high frequency analysis.
(a) Derive the 3 dB upper corner frequencies in terms of the transistor capacitors C_{μ} and C_{π}. (10%)
(b) Derive the midband voltage gain. (5\%)
(c) The circuit parameters are $V^{+}=10 \mathrm{~V}, V^{-}=-10 \mathrm{~V}, R_{S}=0.1 \mathrm{k} \Omega, R_{1}=42.5 \mathrm{k} \Omega$, $R_{2}=20.5 \mathrm{k} \Omega, R_{3}=28.3 \mathrm{k} \Omega, R_{E}=5.4 \mathrm{k} \Omega, R_{C}=5 \mathrm{k} \Omega$, and $R_{L}=10 \mathrm{k} \Omega$. The transistor parameters are $\beta_{o}=150, V_{B E(O N)}=0.7 \mathrm{~V}, C_{\pi}=12 p F$, and $C_{\mu}=2 p F$. Given that the quiescent collector current $I_{C Q}=1.02 \mathrm{~mA}$, determine the values of 3 dB upper corner frequency for C_{L} acting as an open circuit and for $C_{L}=15 \mathrm{pF} .(10 \%)$

