V^+

 $I_{\text{REF}} \downarrow \lessgtr R_1$

 ${}_{R_{E1}}$

 V^-

 I_0

 Q_2

 $\circ V_{C2}$

1. (20%) The transistors are matched. Assume that base currents are negligible and that $V_A = \infty$. Show that

$$I_O R_{E2} - I_{REF} R_{E1} = V_T \ln\left(\frac{I_{REF}}{I_O}\right).$$

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3. (30%) Let $I_{\text{REF}} = 0.2 \text{ mA}$, $K_n = 0.2 \text{ mA/V}^2$, $V_{TN} = 1 \text{ V}$, and $\lambda = 0.02 \text{ V}^{-1}$. (All transistors are matched.) Determine the output resistance looking into the drain of M_6 .

4. (25%) Assume all transistors are matched. Draw the small-signal model and use the small-signal hybrid- π parameter notations such as g_m , r_{o1} , etc. for transistors to derive the voltage gain $A_v = v_o / v_I$.

