- 1. (25%) The transistor parameters are: $\beta = 100$, $V_{BE(on)} = 0.7$ V, and $V_A = \infty$.
 - (a) Determine the midband voltage gain (15%).
 - (b) Calculate the lower corner frequency. (10%)

2. (25%) The transistor parameters are $K_n = 0.5mA/V^2$, $V_{TN} = 2V$, and $\lambda = 0$. Determine the maximum value of C_L such that the bandwidth is at least 5 MHz.

- 3. (25%) The transistor parameters are $V_{TP} = -2V$, $K_p = 2mA/V^2$, $\lambda = 0.01V^{-1}$, $C_{gs} = 10 pF$, and $C_{res} = 1 nF$
 - and $C_{gd} = 1 pF$.
 - (a) Determine the upper 3dB frequency. (15%)
 - (b) Find the midband voltage gain. (10%)

4. (25%) The transistor parameters are $\beta = 100, V_{EB(on)} = 0.7V, V_A = \infty, C_{\pi} = 10 pF$, and $C_{\mu} = 1 pF$. Determine the upper 3dB frequencies corresponding to the input and output portions of the equivalent circuit.

