1. (20%) The transistor parameters for Q_1 and Q_2 are $V_{BE1,2}(\text{on}) = 0.7\text{V}$ and $\beta_{1,2} = 90$. The parameters for Q_3 are $V_{BE3}(\text{on}) = 0.6\text{V}$ and $\beta_3 = 60$. Assume $V_A = \infty$ for all transistors. Find the resistance R_1 such that $I_o = 0.5$ mA.

2. (20%) Assume M_3 , M_4 , and M_5 are identical, and the transistor parameters are $V_{TN} = 0.7$ V, $k'_n = 80 \mu$ A / V², and $\lambda_n = 0$. Design the NMOS circuit for their (W/L) ratios such that $I_{REF} = 0.1mA$, $I_{O1} = 0.2mA$, and $I_{O2} = 0.3mA$.

3. (30%) The parameters of the transistors are $V_{TN} = 0.6$ V, $V_{TP} = -0.6$ V, $k'_n = 100\mu$ A/V², $k'_p = 60\mu$ A/V², and $\lambda_n = \lambda_p = 0.02$ V⁻¹. The width-to-length ratios are shown in the figure. The value of V_{GSQ} is such that $I_{D1} = 100\mu$ A, and M_1 and M_2 are biased in the saturation region. Determine the small-signal voltage gain $A_v = v_0/v_i$.

4. (30%) The NMOS transistor parameters are $V_{TN} = 0.4$ V, $k'_n = 100\mu$ A/V², $\lambda_n = 0$ and the PMOS transistor parameters are $V_{TP} = -0.6$ V, $k'_p = 40\mu$ A/V², $\lambda_p = 0$. Design the circuit such that $I_{REF} = 50\mu$ A, $I_{O1} = 0.12m$ A, $I_{D3} = 25\mu$ A, $I_{O2} = 0.15m$ A, $V_{SD2}(\text{sat}) = 0.35$ V, and $V_{DS5}(\text{sat}) = 0.35$ V.

