Note: Exam time is 10:00AM-12:00PM. The calculator is allowed.

- 1. (30%) The transistor parameters are: $K_n = 0.2 m A / V^2$,
 - $V_{\scriptscriptstyle TN} = 2V$, and $\lambda = 0.02V^{-1}$.
 - (a) Determine the differential-mode voltage gain $A_d = v_{o3} / v_d$ and the common-mode voltage gain $A_{cm} = v_{o3} / v_{cm}$. (20%)
 - (b) Determine the output voltage v_{o3} if $v_1 = 2.15 \sin \omega t \text{ V}$ and $v_2 = 1.85 \sin \omega t \text{ V}$. (10%)

- 2. (20%) The transistor parameters are $\beta = 100$ and $V_A = \infty$. The bias currents are indicated on the figure.
 - (a) Determine the input resistance R_i and the output resistance R_o . (10%)
 - (b) Determine the small-signal voltage gain $A_v = v_o / v_{in}$. (10%)

3. (20%) The transistor parameters are

 $V_{TN} = 0.8V, V_{TP} = -0.8V, \frac{1}{2}k'_n = 50\mu A/V^2, \frac{1}{2}k'_p = 20\mu A/V^2,$ and $\lambda_n = \lambda_p = 0.02V^{-1}$. The values of W/L for M_1 and M_2 are 20, and those of $M_3 - M_6$ are 40. The value of V_{GSQ} is such that $I_{DS1} = 80\mu A$ and all transistors are biased in the saturation region. Determine the small-signal voltage gain $A_v = v_o/v_i$.

- 4. (30%) The transistor parameters are $\beta = 100, V_{BE}(on) = 0.7V$ and $V_A = \infty$.
 - (a) Determine R_E such that $I_E = 150 \mu A$.
 - (b) Find A_d , A_{cm} , and $CMRR_{dB}$ for one-sided output at v_{O2} .
 - (c) Determine the differential- and common-mode input resistances.

