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Feedforward Active Noise Control With a New
Variable Tap-Length and Step-Size

Filtered-X LMS Algorithm
Dah-Chung Chang, Member, IEEE, and Fei-Tao Chu

Abstract—The fixed tap-length and step-size filtered-X least
mean-square (FxLMS) algorithm is conventionally used in active
noise control (ANC) systems. A tradeoff between the performance
and the convergence rate is a well-known problem due to the
choice of the step size. Although the variable-step-size FxLMS
algorithms have been proposed for fast convergence, a long
tap-length filter is frequently required in order to deal with dif-
ferent environments such that the convergence rate is still subject
to a small step size for the long tap length. In this paper, we study a
new ANC system with a variable tap-length and step-size FxLMS
algorithm. Based on the assumption of an unsymmetric and
two-sided exponential decay response model for the ANC control
filter, the new FxLMS algorithm has the minimum mean-square
deviation for the optimal filter coefficients. In the online secondary
path modeling ANC system, simulation results show that the new
algorithm with different kind of variable step sizes can provide
significant improvements of convergence rate and noise reduction
ratio, compared to the fixed-tap-length FxLMS algorithms.

Index Terms—Active noise control, exponential decay response,
filtered-X LMS, mean-square deviation, noise reduction ratio, sec-
ondary path model.

I. INTRODUCTION

A S IT dates back to at least three decades ago, the acoustic
noise reduction problem has been explored for real-life

applications such as headphones, automobiles, mobile phones,
and some industries which need to remedy the noisy circum-
stances [1], [2]. Thanks to the rapid development of digital tech-
nologies, the active noise control (ANC) systems using adap-
tive filters may have smaller volume [3] and can be appealing
alternatives to those using passive methods. To cancel the unde-
sired noise from a primary noise source, the adaptive ANC al-
gorithms compensate for the uncertain effects in the secondary
path, modeling the electrical signal transmission path between
the reference microphone and the error microphone, to mini-
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mize the cancellation error signal detected by the error micro-
phone. One of most widely used algorithms for the adaptive
ANC system is the filtered-X least mean-square (FxLMS) al-
gorithm [4]. Although some adaptive algorithms such as the fil-
tered-X recursive least-squares (FxRLS) [5] and Kalman filter
[6] can provide better convergence rate and performance, the
FxLMS algorithm is very appealing to researchers because of a
relatively lower computational burden.
Some variants of the FxLMS algorithms for ANC can

be found in the literature, such as the lattice ANC [7], fre-
quency-domain ANC [8], [9], delayless subband ANC [10],
[11], etc. The lattice structure filter fails to provide a satisfying
convergence rate when the primary noise is broadband. Taking
into account long impulse responses of the primary and the
secondary paths, the LMS processing in the transform-do-
main or subband takes the advantage of a reduced eigenvalue
spread of the input autocorrelation matrix so as to obtain a
faster convergence rate than the conventional time-domain
processing. Nevertheless, the transform-domain algorithm re-
quires an additional complexity to implement the discrete-time
Fourier transform (DFT), wavelet, or filter banks. Compared
with the above variants, the fixed-step-size FxLMS algorithm
is relatively simple from the aspect of implementation. Al-
though the performance and the convergence rate of the ANC
control filter can be determined by adjusting the step size,
the fixed-step-size algorithm suffers from how to choose a
proper step size to fit a variety of environments. As a result,
to possess fast convergence, the variable-step-size and the
normalized LMS algorithms are tailored for the FxLMS based
ANC applications [12]–[14]. However, another practical issue
for the ANC application is that the tap length of the ANC filter
is usually unknown and may vary in different situations. To
accommodate most cases, a priori long-tap-length is required
for a fixed-tap-length FxLMS algorithm. This leads to that the
maximum step size is limited by a long tap-length ANC filter,
and so is the convergence rate [12], [15].
For some applications such as headphone, the plant and the

secondary path do not change drastically and offline measure-
ment can be sufficiently applied in these cases. However, for
broad ANC applications, the unknown electro-acoustic plant
can be considered as dynamic [16], [17]. Moreover, a lot of
works, for example [12], [13], [18]–[22], are focused on the on-
line modeling and estimation problems. That means, a timie-
varying plant or secondary path can lead to a time-varying con-
trol filter, and hence, we study a new ANC method with a vari-
able tap-length and step-size FxLMS algorithm, maintaining

2329-9290 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Lic
en

se 
Agre

em
en

t S
ub

jec
t t

o I
EEE



CHANG AND CHU: FEEDFORWARD ANC WITH A NEW VARIABLE TAP-LENGTH 543

fast convergence and better performance. There are some ex-
isting variable tap-length LMS algorithms [23]–[27] for system
identification. Some works [26], [27] considered the exponen-
tial decay response for the plant with unknown impulse response
since it is the asymptotic behavior in response to many single
exponential decay curves in the physical world, and thus, the
exponential model can cover a large set of physical systems.
For ANC applications, the secondary path commonly includes a
lowpass filter that results in a two-sided decaying envelop on the
impulse response. Moreover, the maximum impulse response
output of the primary plant is not necessarily at the beginning
of the response because of acoustic transmission delay in the
acoustic duct. Hence, the proposed algorithm in this paper is
developed based on an unsymmetric and two-sided exponen-
tial decay impulse response model, which is different from the
single exponential decay response model previously studied in
[26], [27]. The principle of the variable-tap-length algorithm is
to first approach the modeled part of the impulse response with
a smaller tap length and a larger step size obtained by mini-
mizing the mean-square deviation (MSD) of the filter coeffi-
cients. Then, the tap length is progressively increased and finally
converged to retain the minimum MSD while continuously de-
creasing the step size. A new variable-step-size method is also
proposed in this paper, with the help of converging to the min-
imum MSD. Besides, we develop a recursive form for optimal
tap-length and step-size estimation in order to simplify the com-
putational complexity. Since the MSD of the two-sided expo-
nential decay model can be proved as a convex function of the
tap lengths and step sizes, the new algorithm has the property
of global optimality.
The new variable-tap-length FXLMS algorithm is derived

based on a generalized form of two different step sizes for the
two-sided responses. Furthermore, some practical considera-
tions of the proposed algorithm used in the ANC system are
discussed. To verify the performance, we simulate the ANC
structure with online secondary path model estimation [18],
[28]. The numerical analysis includes the MSD evaluation for
a given ANC control filter and the noise reduction ratio (NRR)
comparison with the modeling data taken from [2]. Simulation
results show that the new variable-tap-length FxLMS algorithm
has fast convergence and better performance employed with
different kind of variable step sizes, compared to the conven-
tional fixed-tap-length FxLMS algorithms even assuming the
tap length can be known a priori.
This paper is organized as follows. Section II provides the

development of the new FxLMS algorithm and the recursive
form. The global convergence property and application issues
in ANC systems are also discussed in this section. Section IV
provides numerical comparison of the proposed algorithm with
different variable step sizes and other fixed-tap-length FxLMS
algorithms. Finally, conclusions are drawn in Section V.

II. THE ANC SYSTEM USING THE FXLMS ALGORITHM

A. FxLMS for ANC

A basic ANC structure using the FxLMS algorithm is de-
picted in Fig. 1(a). is an unknown plant in the primary
path which models the acoustic response between the reference

Fig. 1. Block diagram of an ANC system. (a) Basic structure. (b) Complete
structure with online secondary path modeling.

microphone and the error microphone. is convolved
with the loudspeaker system in the secondary path to
cancel . The background noise is usually uncorrelated
with and adds to the cancellation error signal . The
objective of is to minimize the mean-square error (MSE)
of . Denote the output of by and the impulse
response of by . Let be a sufficient tap length
for , the coefficient vector at time instant is

, and the input noise
vector . The
cancellation error signal can be expressed as

(1)

where denotes linear convolution.
Let . By minimizing the MSE, the LMS algo-

rithm is to update in the negative gradient direction of
with a step size by

(2)

where is an instantaneous estimate of the MSE gradient
with . From (1), we have

, where
with . Therefore,
. Accordingly, the update equation of

becomes

(3)

Lic
en

se 
Agre

em
en

t S
ub

jec
t t

o I
EEE



544 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 2, FEBRUARY 2014

Note, (3) includes in the update of the filter coefficients,
which is conventionally called the FxLMS algorithm. Gener-
ally, is unknown, so it should be modeled by its estimated
replica , as shown in Fig. 1(a). In fact,

(4)

where is the impulse response of .

B. The Online Secondary Path Model

To obtain , a complete ANC system usually includes
an online secondary path estimation structure, for example, as
depicted in Fig. 1(b) [28]. An internally generated zero-mean
white noise is added to the secondary path in order to es-
timate . However, leads to an additional noisy com-
ponent to as , which will be canceled
by before forming a new error signal to adjust the
coefficients of . We have

(5)

where and . To
improve the convergence of , an adaptive filter is
introduced to cancel the residual difference between primary
path and secondary path, i.e., . In
this online modeling structure, the convergence of the FxLMS
algorithm is affected by the residual auxiliary noise

.
Here, accounts for the composite effect of the loud-

speaker, error microphone, and the circuits such as ADC, DAC,
reconstruction filter, preamplifier, etc. At the initial stage, an ad-
vance measurement of can be used for since is
slowly time-varying due to the thermal noise and device aging
[19], [22]. It is worthy to note, the delay of has to be longer
than that of , or is unable to compensate for

due to the limit of the causality constraint.
In a typical ANC system, the length of the impulse response

of may be very long (hundreds, or moreover, thousands
of taps), which directly affects the tap length of . As men-
tioned in [2], the maximum step size for the FxLMS algorithm
is approximately

(6)

where is the power of and is the overall delay in the
secondary path. When the tap length is long, the convergence
rate will become very slow due to the limit of a very small step
size. Therefore, a variable tap-length and step-size LMS algo-
rithm is considered to remove this obstacle.

III. THE VARIABLE TAP-LENGTH AND

STEP-SIZE ANC METHOD

A. The New FxLMS Algorithm

Denote the z-transform of by . From (1) and (5),
the z-transform of the new cancellation error signal is

(7)

When and are small enough, a simple insight into
(7) is that the cancellation error is close to zero, i.e., ,
after the adaptive filter converges. Hence, we can see that
is to realize the following transfer function:

(8)

In some circumstances, the decay envelops of the impulse re-
sponses of and are presented on both sides of the
maximum output response. For example, has an unsym-
metric decay envelop for propagation delay while consists
of a lowpass filter of symmetric coefficients for a linear-phase
consideration. Therefore, we can generally treat that the im-
pulse response of may have an unsymmetric decay en-
velop, in which left taps and right taps with respect to the
maximum response are assumed here. Denote the left taps of
the optimal coefficients by and
the right taps by , where repre-
sents the maximum response. For simplicity, the following ex-
ponential functions are used to model the envelops of the filter
coefficients:

(9)

where the decay factors and are positive constants, and
is a zero-mean i.i.d. Gaussian random sequence with vari-

ance .
The proposed FxLMS algorithm adaptively adjusts its tap

length and step size as time progresses. Denote by ,
, and the left-hand side tap length, right-hand

side tap length, and step size at time , respectively. Sup-
pose that and . Using the
notations and with subscripts

and representing -tap filter vector
and input vector, respectively, where

and

, we can rewrite (3) by replacing
with as

(10)

where denotes the zero vector and is a
diagonal matrix with

(11)
where and are generally considered as two
different step sizes for and ,
respectively, is the identity matrix, and denotes the

zero matrix. If we consider the same step size,
actually becomes a scalar.
To express the vector by the mod-

eled part , we write
. Now, split
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into three parts as .
The total coefficients error is

(12)

From (8), we can express the output of as

(13)

where
. Substituting (13) into (1) and using (12), the cancel-

lation error signal becomes

(14)

where . Substituting (14) for in (10)
and subtracting on both sides of (10), we obtain

(15)

where

(16)
To develop the adaptation algorithm for , ,
and , the MSD of can be explored by

(17)

where denotes norm and represents taking expecta-
tion. Assume that and are i.i.d. Gaussian sequences
with variances and , respectively. According to the similar
assumption and analysis in [26], we have

(18)

where

(19)

(20)

with

and

(21)

(22)

(23)

(24)

and using (9) for , we have

(25)

(26)

where

(27)

(28)

Note that the third term on the right-hand side of (18), i.e.,
, is small compared with other terms. Hence, we will

neglect it for simplicity in the following work.
The optimal tap lengths can be found byminimizing theMSD

with respect to and . Let
. Taking the derivatives of with respect to

and and setting to zero, we have the following
results after some mathematical manipulation:

(29)
and

(30)
Similarly, the optimal and can be found
by taking the derivatives of with respect to
and and setting to zero, respectively. Since
and become related to and ,
respectively, it is a tough work to get the closed-form solu-
tion for the joint equations. Making the quasi-static assumptions

and , a suboptimal solution
can be efficiently found by replacing and
by and , respectively, to calculate and

. Finally, we have

(31)

and

(32)

From (19), we can call the unmodeled part’s MSD and
the total MSD. Hence, . Also observed

from (31) and (32), considering is so small that it can
be ignored and the adaptive filter approaches the perfect tap
length, both and approach zero such that
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and , which are consistent with

the convergence condition (6) excluding the effect of ac-
cording to (8). If we consider using the same step size for
and , i.e., , then

(33)
In perfect convergence condition, we have

.

B. Recursive Form

To reduce the computational complexity in each recursion, a
more useful scheme is to develop the recursive forms alterna-
tive to (29)–(33). Let us consider the general case for using two
different step sizes in this discussion. The similar process can
be easily adapted to the case for using the same step size. From
(14), it can be shown that . After re-ma-
nipulating (32), we have

(34)

where

(35)

Similarly, from (32) we have

(36)

In fact, from (17) and (19) we can prove that

(37)

which is the modeled part’s MSD.
Now, let us move on writing the result of

and based on (29) and (30). Note that
varies and essentially vanishes as time progresses, and in con-
sequence, the statistics of two successive samples can be viewed
very close, i.e., . Based on the above
statement and some mathematical manipulation, we obtain the
recursive forms for and as follows:

(38)
and

(39)
In practical use, the tap length is actually an integer number.
Hence, we also need to round down and ob-
tained from (38) and (39) to the nearest integers as the resultant.

C. Convergence

The next question is whether the new FxLMS recursions
can converge. Returning to (18), if we can prove that the
second-order derivatives of with respect to ,

, , and are all positive, the
MSD is a convex function of the above four variables and the
developed recursions can find the minimum MSD. Taking the

second-order derivatives of (18) with respect to and
, , and , respectively, we have

(40)

(41)

(42)

and

(43)
In (40) and (41), since and , and

. In (42) and (43), based on (37).
Therefore, (40)–(43) are all positive and then, we have shown
that the total MSD is a convex function of , ,

, and . The new variable tap-length and
step-size FxLMS algorithm can converge to theminimumMSD.

D. Practical Issues for ANC Applications

In typical ANC applications, a proper tap length of is
unknown a priori. Conventional ANC employing a fixed-tap-
length FXLMS algorithm may lead to insufficient steady-state
performance by using a small tap length while to slow conver-
gence by using a large tap length. Hence, the variable-tap-length
FxLMS algorithm is very suited to a realistic ANC system. The
new algorithm gives a better tradeoff between the MSD per-
formance and the convergence rate compared to the fixed-tap-
length algorithm. Some practical issues about this new algo-
rithm are addressed as follows.
1) Delay of the Control Filter: The purpose of the control

filter is to compensate for canceling the reference
noise passing through , in which inherently has
delay brought by the realistic circuits and audio components.
The propagation delay of depends on the circumstances
in applications, however, it is required to be larger than that of

or the ANC structure is not realizable as mentioned in [2].
In the proposed FxLMS algorithm, plays the role of the
optimal delay position for to compensate for the delay dif-
ference between and . The determination of a proper
delay for is required prior to employing the variable-tap
length FxLMS algorithm. An implementationmethod to find the
optimal position of can be described as follows. First,
we setup a sufficient length of buffer for depending on
the application. A priori measure can help to find a proper ini-
tial delay position to assign in the buffer. Then, the pro-
posed algorithm executes the growth of and
through computing for the given delay position. The
optimal position for can be obtained by a simple search
for finding the minimum steady-state with changing
the delay position over a range of nearby positions around the
initial delay position. Actually, the search for the optimal delay
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position is no more needed if and do not experience
essential change.
2) The Ideal Tap Lengths of the Control Filter: In (9), we as-

sume that and are the ideal tap lengths for and ,
respectively. They are involved in computing (19). In the pro-
posed algorithm, choosing sufficiently large and such that

and approach zero, for example, 0.01, we have
. In general, and are quite small and

we choose sufficiently large and , for example, at least,
and , for practical applications, then

and . In consequence, (19)
can be approximated as

(44)
which is independent of and . That is, using larger and
in the algorithm will not affect the MSD performance.
3) Envelop Decay Factor: The decay factors and are

necessary information prior to performing the algorithm. When
the circumstance of the application is stationary, and can
be roughly measured in advance. The following method can be
used for online modification of the factors and . For ex-
ample, the least-squares method for the estimate of at time

is

(45)

where is the th element of . To solve (45) is
a complicated and nonlinear problem. Alternatively, taking the
log function of is a simple while effective method,

(46)

where denotes the set of the elements in to be used
for estimation. Finally, we have

(47)

The similar method can be applied to the estimate of .
4) Termination of the Tap-Length Growth: In the variable-

tap-length algorithm, we assume that and
. However, in practical applications, and are un-

known and possibly, there are no exact values due to the inter-
ference of the background noise. That is, the tap lengths can
continue growing if no limit is imposed based on some crite-
rion. The step size will, therefore, becomes too small to yield
a satisfying MSD performance in a reasonable number of iter-
ations because of an excess tap length. A simple method is to
check the last new taps whether their total energy is effec-
tive, and terminate the growth of the tap length if the energy is
below some threshold. Define that

(48)

and

(49)

The growth termination conditions for and
can be given by

(50)

respectively, where and are the predefined thresholds.

E. Algorithm Summary and Complexity Discussion

In Table I, we summarize the proposed FxLMS algorithm,
provided with the numbers of additions and multiplications that
are required to compute the variables in recursion. Themain part
in the FxLMS algorithms is to adaptively calculate the coeffi-
cients of the control filter. For the conventional method in (3),
a predetermined tap length, say , leads to additions and
K multiplications, which are the minimum requirements of

computational complexity for the conventional FxLMS method
because the extra calculation for a variable step size is pos-
sibly needed. However, is usually chosen large enough to ac-
count for different situations. Also as listed in Table I, the pro-
posed two step-size FxLMS algorithm requires addi-
tions/subtractions and multiplications/divisions in
total. There are also four exponential or logarithmic operations
required to compute recursive variables. Here, we do not repeat-
edly count the operational numbers of the equations if they have
the same computational terms, and the fixed values in recursion
are treated as preprocessed results such as those in (27) and (28).
In addition to avoiding an over-tap-length of control filter,

the new algorithm reduces the computational complexity re-
quired at the start-up of the ANC system. For the conventional
method, the tap length is always fixed as and actually the per-
formance does not benefit from a longer tap length even with
an excess cost. The numbers of additions and multiplications
of the proposed algorithm are proportional to the growing tap
lengths and , and thus, a lower computational com-
plexity is required at the start-up. Since the multiplication is
more complicated than the addition, the number of multiplica-
tions dominates the evaluation of the computational complexity.
From Table I, the number of multiplications of the conventional
FxLMS method is larger than that of the proposed algorithm as

.

IV. SIMULATION RESULTS

Some numerical experiments have been conducted to val-
idate the proposed variable-tap-length FxLMS algorithm
equipped with different variable step sizes. In this section,
simulation results for three different cases are provided to
show the properties of convergence rate and steady-state per-
formance of the proposed algorithm in comparison with some
fixed-tap-length FxLMS algorithms. In Case 1, we verify the
proposed algorithm to compare the MSD performance for
different algorithms with a given that is generated from
a zero-mean white Gaussian process . Then, we generate

by . In this case, exactly
matches the assumption of the proposed algorithm. Once the
estimate of is obtained as , the MSD is evaluated
through a 100 runs Monte Carlo simulation in decibels (dB) by
calculating for each iteration. In Case 2,
the and models are similar to the data taken from
the disk included in [2]. The tap lengths of and are
quite short compared to those used in Case 1. In Case 3, the
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TABLE I
THE SUMMARY OF THE PROPOSED FXLMS ALGORITHM AND COMPUTATIONAL COMPLEXITY

Note: Four exp or log operations are also required for the proposed FxLMS algorithm to compute recursive variables.

TABLE II
SIMULATION SETUP FOR THE THREE CASES

is assumed for FTL algorithms.

magnitude response of are worse than that of used
in Case 2, and has a longer tap length. We use the same
in Case 2 and Case 3. The simulation parameters for the three
cases are summarized in Table II. Since is unknown in
Case 2 and Case 3, only the noise reduction performance is
evaluated instead of the MSD. We define the noise reduction
ratio NRR (dB) as

(51)

where is then approximated by ensemble average in our
simulations for simplicity. In all cases, is obtained with
online estimation in the structure as depicted in Fig. 1(b). The

impulse responses and frequency responses of and
for the three cases are plotted in Figs. 2–6.
Some fixed-tap-length algorithms are compared with the pro-

posed algorithm for different step sizes. Except for Case 1, the
optimal tap length for the fixed-tap-length algorithms is actu-
ally unknown. For the purpose of comparison, the tap length ob-
tained from the steady-state tap length of the proposed algorithm
is used for the fixed-tap-length algorithms. For simplifying the
figure legend, we abbreviate the fixed-tap-length algorithms as
FTL and the variable-tap-length algorithms as VTL. The algo-
rithms for comparison are briefly described as follows:
• FTL–LS: A large step size for maintaining the FxLMS sta-
bility can be set as , according to the

description below (33).
• FTL–SS: A smaller step size for the FxLMS algorithm will
provide a steady-state performance better close to the pro-
posed algorithm than a large step size. In order to reach
the steady-state performance within the inspected iteration
number, we set .

• FTL–NSS: The normalized LMS algorithm uses a normal-
ized step size (NSS) to optimize the speed of convergence
while maintaining a satisfying steady-state performance
[2]. The step size to be used here is

(52)
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Fig. 2. Impulse response and frequency response of in Case 1. (a) Im-
pulse response of . (b) Frequency response of .

where the normalizing factor is generally chosen with
the range . In our simulations, we set .

• FTL–VSS: A variable step size (VSS) scheme for the
FxLMS algorithm, similar to [12], is simulated using

(53)

where is a weighting factor, , and is cal-
culated by with and
representing the maximum and minimum average powers
of , respectively and ,
where is an averaging constant with here.

uses the average of the first 100 iterations of
multiplied by 1.3 while uses the average of the last
100 iterations of multiplied by 0.7.

• VTL–VSS–I: The proposed variable-tap-length algorithm
with a universal step size .

• VTL–VSS–II: The proposed variable-tap-length algorithm
with two different step sizes and .

• VTL–VSS–III: This scheme uses the proposed variable-
tap-length algorithm, but with a simplified variable step
size. From [27], we use the estimated tap length for

Fig. 3. Impulse response and frequency response of in Case 1. (a) Impulse
response of . (b) Frequency response of .

each iteration to replace the maximum tap length in (6).
Then, we have variable step sizes for VTL with

(54)

and

(55)

where is a factor related to the delay of the secondary
path, and assuming is known a priori in simulations.

A. Case 1

The tap length of is , which is divided into
and . The tap length of the loudspeaker

model is , so that of is 1088. The variance of
the Gaussian process for is . The exponential
decay factors are and . The primary noise

, auxiliary noise , and background noise are zero-
mean i.i.d. and uncorrelated Gaussian processes with variances

, , and , respectively. By terminating
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Fig. 4. Impulse response and frequency response of in Case 2. (a) Im-
pulse response of . (b) Frequency response of .

the growth of the tap lengths for the proposed algorithm, we set
, and .

From Fig. 7, we find that the VTL algorithms generally have
faster convergence and better performance than the FTL algo-
rithms. For FTL algorithms, FTL–LS has relatively faster con-
vergence rate because of a larger step size, however, it leads to
the worst steady-state MSD performance, which is similar to the
FTL–NS algorithm. FTL–VSS takes the advantages of FTL–SS
and FTL–LS for a step size that is compromised to dramatically
improve the steady-state performance better than FTL–LS, also
with better convergence rate than FTL–SS. For VTL algorithms,
the proposedVTL–VSS–I has the fastest convergence rate while
the proposed VTL–VSS-II reaches the best performance. Al-
though the convergence speed of VTL–VSS–III is similar to that
of VTL–VSS–I, its step size is too simple to provide a better
steady-state performance than the proposed step sizes. In ad-
dition to either slower convergence or worse performance, an-
other disadvantages of the FTL algorithms is to set a proper tap
length a priori, which is a problem in practical environments,
especially when the device is aging. The convergence curves
of tap lengths and step sizes of the FTL algorithms are shown
in Fig. 8(a) and (b). It is worth to note, although FTL–VSS–II
provides a better flexibility of two different step sizes to reach

Fig. 5. Impulse response and frequency response of in Case 2 and Case 3.
(a) Impulse response of . (b) Frequency response of .

the steady-state tap lengths very soon, the MSD convergence
rate may not benefit from this due to getting a smaller step size
early, in spite of achieving a superior MSD performance at last.
The steady-state in this case is shown in Fig. 9(a),

where the blue line is the optimum coefficients while the red
line is the estimated coefficients obtained by the proposed
VTL–VSS-II algorithm. The resultant after 50000 iter-
ations has 1021 taps. Since the steady-state MSD is as low as
about -22 dB, there is almost no significant difference between
the optimum coefficients and the estimated ones. Moreover, our
simulation takes into account the background noise at -20 dB
in this case, so the absolute difference level after about 400
taps seems similar as shown in Fig. 9(b) because the coeffi-
cients after 400 taps may be so small that do not have distinct
influence on the resulted output signal in presence of -20 dB
background noise. That is, the estimation accuracy for small
coefficients (possibly after 400 taps in this case) is disturbed
by the background noise. No doubt, the MSD and the absolute
difference level for small coefficients will become smaller if
we set lower background noise.
In Fig. 10, we show the relationship between steady-state
and the secondary path delay from -20 shifted taps through
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Fig. 6. Impulse response and frequency response of in Case 3. (a) Im-
pulse response of . (b) Frequency response of .

Fig. 7. Comparison of the MSD performance for different ANC algorithms in
Case 1.

20 shifted taps with respect to the maximum response output.
The best performance of steady-state is at zero delay shift
and the performance degrades as the number of the delay shift

Fig. 8. Convergence of the tap lengths and step sizes for the proposed variable-
tap-length algorithm in Case 1. (a) Tap lengths. (b) Step sizes.

Fig. 9. Steady-state control filter coefficients in Case 1. (a) Optimum coeffi-
cients (blue) and estimated coefficients (red). (b) The absolute difference.

taps increases. Note that this curve is not symmetric because the
impulse response of has different exponential decay fac-
tors. From this curve, the optimum secondary delay position for

can be found by searching for the delay tap of the min-
imum steady-state .
An experiment is employed to see the effect of primary noise

reduction for VTL–VSS–II. Suppose the input noise is
exacerbated with variances , 49, 100, and returned to
unity at the 15000th, 25000th, 35000th, and 45000th iterations,
respectively, as shown in Fig. 11(a). From Fig. 11(b), the ANC
output maintains its cancellation error noise without
significant change compared to the original output level for
noise control. To evaluate the noise reduction performance
of the ANC, Fig. 12 plots the NRR comparison of the VTL
algorithms and the FTL algorithms. The cancellation error
noise is suppressed to about 1/10 of the original input
noise with about 20 dB NRR, which can be also observed
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Fig. 10. MSD v.s. the secondary path delay shifts with respect to the maximum
response output in Case 1.

Fig. 11. The effect of noise reduction in Case 1. (a) Primary noise .
(b) Cancellation error signal . (c) The magnified magnitude scale of (b).

by comparing Figs. 11(a) and (c). In addition to a better MSD
performance, the proposed algorithm has superior convergence
rate and steady-state performance in NRR.
To check the robustness of the proposed algorithms, we

consider the situation that the response of the electro-acoustic
plant abruptly changes during the ANC adaptation process.
Our simulation setup is all the same as the above in Case
1, except for using a shortened impulse response of
before the 28000th iteration. The shortened plant is gen-
erated from the impulse response of multiplied by

, for the first 100 taps and by
, for the last 924 taps,

and then the new impulse response is normalized. In Fig. 13,
the MSD performance significantly degrades at the iteration
number of changing the response. However, all of the
different ANC algorithms can converge as the previous results,
in where the proposed algorithms are not deteriorated and still
have superior convergence rate and performance. As shown in

Fig. 12. Comparison of NRR performance for different ANC algorithms in
Case 1.

Fig. 13. Comparison of the MSD performance with abrupt response change of
in Case 1.

Fig. 14(a), VTL-VSS-I and VTL-VSS-II increase their num-
bers of taps after the response changes. Actually, the change
of the response causes the change of step sizes as shown in
Fig. 14(b), and then leads to the increase of tap lengths. In
contrast, VTL-VSS-III almost does not change its tap length
and step size in this case because of using a simple equation to
calculate the step size.

B. Case 2

In this case, the tap length of is 145 and that of the
loudspeaker system model is . The statistics of
primary noise, auxiliary noise, and background noise are the
same as those used in Case 1. For the FTL algorithms, we as-
sume the tap length of is . The initial exponen-
tial decay factors used for the VTL algorithms are
and . The parameter of the Gaussian process
for is set to be 0.01. To terminate the growth of the
tap lengths for the proposed algorithms, we choose ,

, and , where we set a smaller than
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Fig. 14. Convergence of the tap lengths and step sizes with abrupt response
change of in Case 1. (a) Tap lengths. (b) Step sizes.

Fig. 15. Comparison of NRR performance for different ANC algorithms in
Case 2.

that used in Case 1 because the tap lengths in this case are rela-
tively shorter than those in Case 1.
For a case of short tap lengths, the difference of the con-

vergence speed in NNR between the FTL algorithms and
the VTL algorithms becomes not very distinct, as shown in
Fig. 15. However, it is worth to note that we simulate the
FTL algorithms based on the assumption of knowing the ideal
tap length of , which is actually unknown in practical
situations. Even with the ideal simulation condition for the
FTL algorithms, the VTL algorithms still have comparable
convergence speed and steady-state performance. From Fig. 16,
we can see that VTL–VSS–II reaches a better ideal tap length
for with about 88 taps while VTL–VSS–I with about 78
taps. The VTL–VSS–III algorithm gives a shorter tap length
for and a longer tap length for , and shows a worse
NNR performance even though its convergence speed is a little
faster than VTL–VSS–II.

Fig. 16. Convergence of the tap lengths and step sizes for the proposed vari-
able-tap-length algorithm in Case 2. (a) Tap lengths. (b) Step sizes.

Fig. 17. Comparison of NRR performance for different ANC algorithms in
Case 3.

C. Case 3

The tap length of is 261 and that of is ,
where the frequency response of is worse than the former
with a longer tap length. The statistics of primary noise, auxil-
iary noise, and background noise are also the same as those used
in Case 1. For the FTL algorithms, we assume the tap length of

is . The initial exponential decay factors used
for the VTL algorithms are and . The vari-
ance of the Gaussian process for is assumed to be
0.01. To terminate the growth of the tap lengths for the proposed
algorithm, we set , and .
Since the tap length of is a little longer than that in

Case 2, the difference of the convergence speed inNNR between
the FTL algorithms and the VTL algorithms becomes obvious,
as shown in Fig. 17. In this case, the VTL algorithms show
satisfying convergence rate and performance compared to the
FTL algorithms that are simulated under the assumption of a
given tap length. From Fig. 18, we can see that VTL–VSS–II
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Fig. 18. Convergence of the tap lengths and step sizes for the proposed vari-
able-tap-length algorithm in Case 3. (a) Tap lengths. (b) Step sizes.

also reaches a tap length for with about 220 taps while
VTL–VSS–I with about 210 taps. Note that, since we do not
know the exact tap lengths for in this case, we set a
longer and in the algorithm. Hence, it is possible for
the FTL algorithms to over-estimate the tap length of
slightly for finding minimum MSD with given growth termi-
nation parameters and . In contrast, The VTL–VSS–III
algorithm gives a longer tap length for in this case.

V. CONCLUSION

The conventional fixed-tap-length FxLMS algorithms for
ANC usually require a prior long tap-length control filter for
different environments, so the convergence rate becomes slow
due to the limit of the maximum step size. The new vari-
able-tap-length FxLMS algorithm can self-adjust the required
tap length according to the environment such that the new
ANC system can better reach fast convergence compared to
the conventional FxLMS algorithms. For ANC applications,
the primary plant and the secondary path model commonly
have unsymmetric impulse responses with respect to the max-
imum response output. Thus, the new FxLMS algorithm is
developed with a generalized form of different step sizes for a
two-sided exponential decay response model and is proved to
have the minimum MSD for optimal filter coefficients. Some
application issues about the proposed algorithm are also ad-
dressed in this paper. From the results simulated for the online
secondary modeling ANC system, the new variable-tap-length
FxLMS algorithm along with different variable step sizes has
better convergence rate and performance in contrast to the
fixed-tap-length FxLMS algorithms.
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