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Adaptive Generalized Sidelobe Canceler
Beamforming With Time-Varying

Direction-of-Arrival Estimation
for Arrayed Sensors
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Abstract—Adaptive generalized sidelobe cancelers (GSCs)
have been widely used to enhance the desired signal and
instantaneously suppress interference signal and noise.
However, the GSC beamforming method must know the direc-
tion of arrival (DOA) of the desired signal in advance. In this
paper, we consider the case of a sensor array application
in free-field air in which the target signal source is moving,
leading to a time-varying DOA problem. Through analysis
of the GSC output error signal, we propose an effective
method for estimating the time-varying DOA for a GSC. The
new method avoids the intensive complexity requirements of
conventional DOA estimation algorithms such as the multiple
signal classification algorithm and estimation of signal para-
meters via rotational invariant techniques. In addition, the convergence performance of adaptive GSC algorithms suffers
from an error signal in the presence of the desired signal. A simple augmented Kalman filter (AKF) is employed to calculate
the beamformer’s weighting coefficients, removing the influence of the desired signal from the GSC output to improve the
convergence performance. A simulation evaluation of the signal-to-interference-plus-noise ratio (SINR) revealed that the
AKF algorithm combined with the new DOA tracking method has a better convergence rate and SINR performance than
other adaptive GSC algorithms of similar complexity such as the standard Kalman filter and recursive least squares.

Index Terms— Beamforming, generalized sidelobe canceler (GSC), sensor array, direction-of-arrival (DOA), Kalman
filter (KF).

I. INTRODUCTION

ADVANCED signal processing technologies with sensor
arrays have attracted considerable interest for the sup-

pression of interfering signals in communication, radar, and
microphone applications [1]–[4]. In a real-world environment,
a received signal is usually composed of the desired signal
sent from the target source and unwanted signals emitted by
another source that causes interference. The interfering signals
can significantly degrade the performance of obtaining the
desired signal. The collaborative beamforming method uses
multiple sensors for efficient power usage to improve this per-
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formance [5]–[7]. With multiple sensors, interference reduc-
tion is usually realized through adaptive beamforming such
as with a generalized sidelobe canceler (GSC) [3], [8], [9].
The main concept of this beamforming technique is to maxi-
mize the gain of the array output in the direction of the desired
signal while minimizing gains in the directions of interfering
signals by adjusting the weighting vector of the beamformer.

From a theoretical perspective, the minimum variance dis-
tortionless response (MVDR) criterion based on the linearly
constrained minimum variance method [10] provides the opti-
mum solution to beamforming problems, provided that the
direction of arrival (DOA) of the desired signal is known
a priori. However, the MVDR beamformer must calculate the
inverse of the autocovariance matrix of the array input signal,
but the accurate value is not easy to obtain. Instead, the GSC
method combined with adaptive filters is more efficient and
has lower computational cost. Some recursive algorithms such
as the least mean square (LMS) [11], recursive least square
(RLS) [12], [13], and Kalman filter (KF) [14], [15] algorithms
are usually applied to implement a GSC. Notably, the afore-
mentioned adaptive algorithms are developed to recursively
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adjust their filter coefficients by minimizing the error signal;
that is, the convergent direction of the algorithm is led by a
small error signal. Conventionally, the adaptive GSC method
uses the GSC output as the error signal to converge the weight-
ing vector of the beamformer, which may result in robustness
and convergence problems if the GSC output contains the
desired signal.

Furthermore, the performance of the conventional GSC is
only guaranteed when the exact DOA of the desired signal
is known because a mismatched DOA results in performance
loss. A variety of DOA estimation problems have been studied
in the field of signal processing for sensor arrays [16]–[18].
DOA estimates can be obtained using some typical offline
algorithms, such as the multiple signal classification (MUSIC)
algorithm [19], [20] and the estimation of signal parame-
ters via rotational invariance technique (ESPRIT) [21], [22].
However, these methods often incur a heavy computational
load if the DOA of the target source is time-varying and
requires tracking. For the purpose of simplicity, some subopti-
mal methods haven been proposed. For example, an approxi-
mate maximum likelihood approach was proposed for acoustic
DOA estimation [23]. As shown in [24], the DOA can
be obtained by taking advantage of the symmetrical pla-
nar array about two axes in a three-dimensional monopulse
radar system, and a reduced-dimension GSC structure can
reportedly offer effective suppression of interference. Some
robust and adaptive methods have been proposed to cope with
the DOA mismatch problem [25]–[28]. Those methods are
mainly based on using an MVDR beamformer to determine
the beamforming coefficients while applying optimization
schemes. In speech and acoustic applications, a disadvantage
of the optimization process is excessive cost due to the high
computational power required for digital signal processing
(DSP). Hence, an efficient DOA tracking algorithm applicable
to the adaptive GSC structure, such as a KF-based GSC for
interference cancellation, would be favorable for addressing
the time-varying DOA engendered by a moving source.

In this paper, a new DOA tracking method based on the GSC
output error signal is proposed for adaptive GSC beamforming.
A new KF-based GSC algorithm combined with the DOA
tracking method is simulated under the scenario of a moving
target signal source along with multiple interfering signals for
enhancing the signal-to-interference-plus-noise ratio (SINR).
There are two main features of this work that are worth noting:

• We assume that an approximate estimate of the DOA of
the target signal source is given in advance, and the DOA
is time-varying because the target source moves. In our
framework, the KF-based GSC model is developed on the
basis of the DOA parameter. Taking into consideration
the DOA mismatch, we can observe from the SINR
analysis of the GSC that even when the beamformer’s
weighting vector is accurately known, thus eliminating
interfering signals, the DOA mismatch still increases the
noise power such that the GSC output signal-to-noise
ratio (SNR) decreases. Therefore, we propose a new DOA
tracking algorithm that can be applied along with the
GSC operation without any training signal, thus avoiding
the intensive computational complexity required in the

Fig. 1. System concept of the sensor array.

conventional MUSIC algorithm and ESPRIT for DOA
estimation.

• An augmented KF (AKF) approach [29] is applied to
estimate both the beamformer’s weighting vector and
the signal of the moving target. Using the estimated
target signal, the AKF algorithm can reduce the influence
of the desired signal at the GSC output such that the
SINR performance of the new AKF GSC is improved.
The complexity of a conventional KF is known to be
subject to the computation of the inverse matrix, the size
of which depends on the dimension of the observation
equation in the KF. However, because of its remarkable
simplicity, the AKF developed in this paper only requires
a 2×2 matrix inversion. Therefore, it is suited to practical
implementation with DSP.

The simulation results reveal that, except for the lack of
performance improvement resulting from the target signal
source approaching the interfering signals, the proposed DOA
tracking algorithm provides satisfying estimation performance;
moreover, the AKF has a faster convergence rate and better
SINR performance than the conventional KF and RLS algo-
rithms at the same computational complexity. Furthermore,
the proposed DOA estimation method has sufficient estimation
robustness and does not lose track of the target signal as the
source moves in the directions of interfering signals.

The remainder of this paper is organized as follows.
Section II describes our system model, where the GSC struc-
ture is delineated by introducing the Wiener solution to the
beamformer’s weighting vector. In Section III, the errors
caused by DOA mismatch are separated from the ideal results
of the beamforming vector and the blocking matrix when
giving a precise DOA. We can observe how those mismatch
errors produce the effect of DOA mismatch on the GSC output
signal, with which the time-varying DOA can be estimated
using a recursive equation proposed in this paper. The AKF
method to obtain the beamforming vector is introduced in
Section IV. Simulation results are explained in Section V.
Section VI provides the conclusions of this work.

II. SYSTEM MODEL

As depicted in Fig. 1, P uniformly distributed sensors are
employed to enhance the desired signal sk by suppressing the
interfering signal ik when the DOA θk of the impinging target
source is different from those of the interfering signals, where
k is the sample index. Define the pth element ap(θk) in the
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Fig. 2. GSC structure of the sensor array with a time-varying DOA.

steering vector for the P arrayed sensors as

ap(θk) = e− j p 2π
λ d sin θk (1)

where p = 0, 1, · · · , P −1, λ is the wavelength of the desired
signal, d is the distance between any two adjacent sensors and
d ≤ λ

2 to prevent spatial aliasing. The received signal of the
pth sensor can be written as

rp,k = ap(θk)sk + i p,k + n p,k (2)

where i p,k is the interfering signal for the pth sensor and
n p,k is the additive white Gaussian noise (AWGN) with
variance σ 2

n .
To express the received signal collected from the P sensors

in vector form, we have

rk = a(θk)sk + ik + nk, (3)

where the received signal vector rk = [r0,k, r1,k ,· · · ,rP−1,k]T ,
steering vector a(θk) = [a0(θk), a1(θk),· · · , aP−1(θk)]T ,
interfering signal vector ik = [i0,k, i1,k ,· · · ,i P−1,k]T , and noise
vector nk = [n0,k, n1,k , · · · , n P−1,k]T .

Our problem formulation follows that the location of sk

is moving along with interfering signals ik; thus, the time-
varying DOA θk must be tracked. Consider the GSC struc-
ture depicted in Fig. 2; the P × 1 beamforming vector
f(θk) = [ f0(θk), f1(θk), · · · , fP−1(θk)]T is used to calculate
the optimal combination of received signals to obtain the
desired signal through the steering vector a(θk). According
to [30], we have

f(θk) = 1

P
a(θk). (4)

The output dk is then written as dk = fH (θk) · rk . However,
dk contains the interfering signals. The P × (P − 1) matrix
B(θk) in the lower branch of the GSC is referred to as the
blocking matrix, whose purpose is to eliminate the desired
signal from the array input by nulling the space of a(θk).
According to [31], the design of B(θk) can be

B(θk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−a∗
1(θk)

a∗
0(θk)

−a∗
2(θk)

a∗
0(θk)

· · · −a∗
P−1(θk)

a∗
0(θk)

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

The output of the blocking matrix is a (P−1)×1 vector, which
can be expressed as bk = BH (θk) · rk . The coefficients of the
(P −1)×1 weighting vector wk = [

w0,k, w1,k, · · · , wP−2,k
]T

are adaptively adjusted to provide the output zk = wH
k bk , with

which the interfering signals contained in dk can be perfectly
removed through subtraction, such that the remaining error
signal ek is only the desired signal and noise. That is,

ek = dk − zk

= fH (θk)rk − wH
k BH (θk)rk

= wH
gsc(θk)rk, (6)

where the P × 1 vector wgsc(θk) = f(θk) − B(θk)wk can be
viewed as the overall beamformer’s weighting vector.

In general, the GSC tends to determine the optimal weight-
ing vector wk by minimizing the cost function J = E[|ek |2],
where E[·] denotes the expectation, which is an unconstrained
optimization problem,

min
wk

J = min
wk

wH
gsc(θk)Rrrwgsc(θk), (7)

where Rrr = E[rkrH
k ]. By setting the first derivative of J to

zero with respect to wk , we obtain the optimal solution

wopt,k =
[
BH (θk)RrrB(θk)

]−1
BH (θk)Rrrf(θk). (8)

The result (8) is referred to as the Wiener solution, which is
optimal for Gaussian noise. Because of the intensive matrix
inversion operation and the prerequisite of knowing the statis-
tics Rrr, (8) is not feasible in practical application.

III. NEW DOA ESTIMATION METHOD FOR A GSC

A. Effect of Mismatched DOA

In the ideal case, the DOA of the desired signal should be
known for a GSC in advance and is usually considered either
a stationary source or a given accurate DOA initialization.
Revisiting (6), by substituting (3) into (6), we have

ek = wH
gsc(θk)a(θk)sk + wH

gsc(θk)ik + wH
gsc(θk)nk

= sk + wH
gsc(θk)nk (9)

where wH
gsc(θk)a(θk) = 1 because B(θk) nulls a(θk), and

wH
gsc(θk)ik = 0 when wk is ideal. That is, if the DOA is

perfectly known for the GSC, then the ideal GSC output
approaches sk with a small and independent cancellation error
noise. Let Ps = E[|sk |2] and σ 2

n = E[nH
k nk]; the total GSC

output power can then be written as Pe = Ps + Pn, where
Pn = wH

gsc(θk)wgsc(θk)σ
2
n . The GSC output SNR is Ps/Pn.

Taking into consideration a DOA estimation error ψk

between the actual DOA θk and the estimated DOA θ̂k at time
k (i.e., ψk = θk − θ̂k), each element in the steering vector
becomes

ap(θk) = e− j pκ sin(θ̂k+ψk ), (10)

where we set κ = 2π
λ d for simplicity. If ψk is sufficiently

small, then we have sin(θ̂k + ψk) ≈ sin(θ̂k) + ψk cos(θ̂k).
Consequently, (10) can be rewritten as

ap(θk) = e− j pκ sin(θ̂k) · e− j pκψk cos(θ̂k). (11)
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As shown in (11), each element of the actual steering vector
equals that of the estimated steering vector multiplied by the
DOA error term e− j pκψk cos(θ̂k). To observe the influence of
ψk in the GSC, we can expand the DOA error term with the
following Taylor series as

e− j pκψk cos(θ̂k) =
∞∑

n=0

(−1)n
[

j pκψk cos(θ̂k)
]n

n!
≈ 1 − j pκψk cos(θ̂k). (12)

Using (12), we can express (11) as

ap(θk) = ap(θ̂k)+ ea,p(θ̂k), (13)

where

ea,p(θ̂k) = − j pκψk cos(θ̂k)ap(θ̂k). (14)

Let ea(θ̂k) = [ea,0(θ̂k), ea,1(θ̂k), · · · , ea,P−1(θ̂k)]T . In light
of (4) and (13), the estimated GSC beamforming vector f(θ̂k)
is

f(θ̂k) = 1

P
a(θ̂k)

= 1

P
a(θk)− 1

P
ea(θ̂k)

= f(θk)+ ef(θ̂k), (15)

where

ef(θ̂k) � [e f,0(θ̂k), e f,1(θ̂k), · · · , e f,P−1(θ̂k)]T

= jκψk

P
cos(θ̂k)[0, a1(θ̂k), · · · , (P − 1)aP−1(θ̂k)]T .

(16)

From (5) and (13), the estimated blocking matrix B(θ̂k)
becomes

B(θ̂k) = B(θk)+ EB(θ̂k), (17)

where

EB(θ̂k) = jκψk cos(θ̂k)

⎡
⎢⎢⎢⎢⎢⎢⎣

a∗
1 (θ̂k)

a∗
0 (θ̂k)

· · · (P − 1)a∗
P−1(θ̂k)

a∗
0 (θ̂k)

0 · · · 0
...

. . .
...

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(18)

By substituting (15) and (17) into wgsc(θk) in (6), the GSC
output error signal in terms of the estimated DOA becomes

ek = wH
gsc(θ̂k)rk

= wH
gsc(θk)rk +

[
ef(θ̂k)− EB(θ̂k)wk

]H
rk

= sk + εk (19)

where

εk = wH
gsc(θk)nk + [ef(θ̂k)− EB(θ̂k)wk]H rk . (20)

From (19) and (20), we can see that the DOA mismatch
ψk results in an extra term [ef(θ̂k) − EB(θ̂k)wk]H rk , which
increases the noise power. The overall output power then
becomes Pe = Ps + Pn + Pψ , where Pψ denotes the power of
the ψk -related term [ef(θ̂k)− EB(θ̂k)wk]H rk . Hence, the GSC
output SNR with DOA mismatch decreases to Ps/(Pn + Pψ).

B. DOA Estimation of a GSC

Suppose that the location of the target source is time
varying. Our idea goes to that the effect of the DOA mis-
match at the GSC output can be explored estimate the DOA.
However, we also assume that a proper initial DOA is given
before the following GSC tracking algorithm begins to operate.

Consider choosing an appropriate number of K samples
over the interval [k, k + K − 1] such that the input signal
sk can be approximated as zero mean. From (19) and (20),
we obtain the K samples of the average of en as follows:

ēk =
k+K−1∑

n=k

en

=
k+K−1∑

n=k

sn +
k+K−1∑

n=k

wH
gsc(θk)nk

+
k+K−1∑

n=k

[
ef(θ̂n)− EB(θ̂n)wn

]H
rn

�
k+K−1∑

n=k

[
ef(θ̂n)− EB(θ̂n)wn

]H
rn . (21)

Using (14)−(18),
[
ef(θ̂n)− EB(θ̂n)wn

]H
rn in (21) can be

rearranged as
[
ef(θ̂n)− EB(θ̂n)wn

]H
rn

= jκψn cos(θ̂n)

P−1∑
p=1

p

[
ap(θ̂n)w

∗
p−1,nr0,n − 1

P
a∗

p(θ̂n)rp,n

]

= ψnεn, (22)

where

εn = jκ cos(θ̂n)

P−1∑
p=1

p

[
ap(θ̂n)w

∗
p−1,nr0,n − 1

P
a∗

p(θ̂n)rp,n

]
.

(23)

The detailed derivations (22)−(23) can be found in
the Appendix.

In practice, the DOA mismatch ψn can be modeled as
ψn = ψ̄k + �ψn for typical source motion, where ψ̄k is a
constant value over n = k, k + 1, · · · , k + K − 1 and �ψn
represents a random noise. That is, ψ̄k can be considered
the average value of the DOA mismatch at index k over the
K samples.1 For simplicity, we assume �ψn ∼ N(0, σ 2

ψ ).
Thus, (21) becomes

ēk � ψ̄k

k+K−1∑
n=k

εn +
k+K−1∑

n=k

�ψnεn . (24)

By neglecting the last term on the right side of (24), we have

ψ̄k �
∑k+K−1

n=k en∑k+K−1
n=k εn

. (25)

1This is a delay of approximately K/2 samples. However, this delay can
be ignored if the sampling rate is sufficiently high.
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Because ψk is a phase that is a real number, we simply choose

ψ̂k = Re{ψ̄k}, (26)

where Re{·} denotes taking the real part and neglect the
imaginary part of ψ̄k as the noisy turbulence.

To prevent the numerical problem in computing (25) as a
result of the measurement noise possibly generating a denom-
inator value close to zero, we may improve the estimation
robustness by replacing ψ̂k with φ(ψ̂k), where φ(·) is a limit
function defined as φ(x) = x if |x | ≤ ξ and φ(x) = 0 if
|x | > ξ , where ξ is a predetermined threshold. Next, we use
the following recursion to estimate θk :

θ̂k+K = θ̂k + μθφ(ψ̂k), (27)

where μθ is a step size that controls the estimate of the DOA.
Although it seldom occurs that ψ̂k abruptly becomes large in
the recursion, we may treat the estimate as a numerical defect
when ψ̂k exceeds the threshold ξ . In this case, we simply
omit the dubious estimate and maintain the estimate from the
last result (i.e., θ̂k+K = θ̂k). Although the proposed algorithm
calculates the DOA every K samples, it is satisfactory for our
simulation cases because the sample frequency can be suffi-
ciently high with a modern DSP specification. Additionally,
the DOA estimates between k + 1 and k + K − 1 can be
approximated by employing a simple extrapolation method
with the results obtained from (27).

IV. AKF BEAMFORMING ALGORITHM

A. Conventional Adaptive Beamforming Algorithms

Although the Wiener solution is optimal for the GSC
problem given an accurate DOA, the matter of most critical
interest is how to implement the theoretical autocovariance
matrix Rrr in (8). For a fixed target source, the statistics of
Rrr can be approximated by the ensemble average as follows:

Rrr,k = (1 − β)Rrr , k − 1 + βrkrH
k , (28)

where 0 < β ≤ 1 is a forgetting factor with a value that
is usually almost zero and Rrr,k can converge to Rrr as k
approaches infinity. However, if the target source is moving,
then obtaining a satisfying result for approaching Rrr with this
method is difficult.

Some adaptive filters such as the LMS filter, RLS filter,
and KF are typical recursive filters that can be adopted to
estimate wk . For example [14], the KF models wk as the state
vector and d∗

k as the observation; consequently, we obtain the
following state and observation equations for the KF:

wk+1 = wk + ωk, (29)

d∗
k = bH

k wk + δk, (30)

where ωk and δk are modeled as the zero-mean white Gaussian
processes. However, the conventional KF used in the GSC
can be applied satisfactorily only under the condition that ek

contains a small amount of white noise. In the case where ek

contains the desired signal sk in addition to white noise, a large
estimation error variance of δk degrades the convergence
performance. In this section, we develop a state-augmented
method for the KF to avoid GSC performance degradation.

B. AKF Algorithm

Suppose that the complex signal sk in (3) is represented as
sk = s̃ke jφk , where φk is the phase of sk and the envelope s̃k

is usually characterized by a low pass signal. For simplicity,
s̃k is modeled as an L-order autoregressive (AR) process

s̃k =
L∑

l=1

αl s̃k−l + ξk , (31)

where αl is the AR coefficient and ξk is a zero-mean white
noise with variance σ 2

ξ and φk can be modeled as a Wiener
process.

φk+1 = φk + ηk, (32)

where ηk is a zero-mean white Gaussian noise with vari-
ance σ 2

η . Using the mentioned signal model, we develop
the AKF to improve the beamfoming performance, where
the desired signal sk can be estimated and canceled from the
observation equation to reduce the estimation error variance.

To simplify the problem, we consider L = 2 for the AR sig-
nal given the coefficients α1 and α2. Next, define the (P+2)×1
state vector xk = [s̃k s̃k−1 φk wT

k ]T and the observation vector
[d∗

k ek]T . Here, the state vector is augmented by introducing
s̃k , s̃k−1, and φk in addition to wT

k . Subsequently, we construct
the state and measurement equations for the AKF as

xk+1 = �xk + uk (33)

and [
d∗

k
ek

]
=

[
h(xk)
g(xk)

]
+

[
v1k

v2k

]
, (34)

respectively, where

� =

⎡
⎢⎢⎣
α1 α2 0 0
1 0 0 0
0 0 1 0
0 0 0 I

⎤
⎥⎥⎦, (35)

h(xk) = bH
k wk + s̃ke jφk , (36)

g(xk) = s̃ke jφk , (37)

and uk is the white zero-mean Gaussian process noise vector
with covariance matrix Qk = diag[σ 2

ξ 0 σ 2
η σ

2
wI], [v1k v2k]T

is the zero-mean white Gaussian observation noise vector with
covariance matrix Rk = diag[σ 2

v σ
2
v ], 0 is the 1 × (P − 1)

zero column vector, and I is the (P − 1) × (P − 1) identity
matrix. Because h(xk) and s̃ke jφk are nonlinear functions
of xk , the extended KF is employed to estimate xk with the
following recursions:

i x̂k+1|k = �x̂k|k, (38)

P̂k+1|k = �P̂k|k�H + Qk , (39)

Gk+1 = P̂k+1|k H H
k+1

Hk+1 P̂k+1|k H H
k+1 + Rk+1

, (40)

x̂k+1|k+1 = x̂k+1|k + Gk+1

([
d∗

k+1
ek+1

]
−

[
h(x̂k+1|k)
g(x̂k+1|k)

])
,

(41)

P̂k+1|k+1 = (I − Gk+1 Hk+1)P̂k+1|k , (42)
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TABLE I
SIMULATION SETUP

where I is the (P + 2)× (P + 2) identity matrix and Hk+1 is
the Jacobian matrix of [h(x̂k+1|k) g(x̂k+1|k)]T ; in other words,

Hk+1 = ∂[h(xk+1) g(xk+1)]T

∂ xk+1

∣∣∣∣
xk+1=x̂k+1|k

=
[

e jφk+1|k 0 j s̃k+1|ke jφk+1|k bH
k+1

e jφk+1|k 0 j s̃k+1|ke jφk+1|k 0

]
, (43)

where θ̂k+1 in bk+1 is obtained from (27).

V. SIMULATION RESULTS

To study the effectiveness of the proposed DOA tracking
method, we evaluated the SINR performance for different
adaptive GSC algorithms along with the proposed DOA esti-
mation method. From (19), the theoretical SINR is defined
as

SINR = E[|sk |2]
E[|εk |2] . (44)

To calculate the SINR through simulations, we first considered
the instantaneous SINR at the kth snapshot, which can be
written as

SINRk(i) = |sk(i)|2
|ek(i)− sk(i)|2 , i = 1, 2, · · · ,M (45)

where the index i represents the i th Monte Carlo simulation
and M is the total number of Monte Carlo simulations.
Subsequently, the ensemble average SINR is calculated from
the results of the M Monte Carlo simulations,

SINRk = 1

M

M∑
i=1

SINRk(i). (46)

For SINR performance evaluation, the proposed AKF algo-
rithm is compared with two typical adaptive beamform-
ing algorithms that have similar computational complexity,
the RLS [13] and KF [15] algorithms, when combined with
the proposed DOA tracking method for a moving target signal
source. Table I details the parameter setup for our simulations.

Fig. 3. Motion scenarios of the target signal source.

Fig. 4. DOA of the target signal source for the three simulation cases.

We consider three motion scenarios of the target signal
source as the moving paths depicted in Fig. 3: staying
fixed (Case 1), going forward (Case 2), and going back
and forth (Case 3). We assume there to be three random
stationary interfering signals moving in different directions.
In Cases 2 and 3, the target source assumes a constant velocity
motion. Fig. 4 shows the variation of the angles to be tracked in
the three simulation cases. For example, in Case 2, we assume
that the sound source makes a circular motion within 9.5 s
(the initial 0.5 s is stable) to achieve a 10-s movement record.
Thus, we have a total of 200 K samples with a sample rate
of 20 KHz.

We set an initial θ0 value for (27), and the target source
starts moving after 0.5 s. A small bias of the initial θ0 within
a few degrees does not cause a severe convergence problem
in the GSC algorithms. During this initial phase, the adaptive
GSC algorithms boost the estimation of their beamforming
weighting coefficients. As the target source moves, the output
signal ek of the GSC increases such that (25) can lead to
updating θk from (27). Case 2 in Fig. 4 demonstrates that the
motion results in an angle change of approximately 0.0035◦
for every K = 10 samples. Next, setting the threshold ξ =
0.35◦ for the limit function in (27) means that if the estimate
ψ̂k has a tolerance that is more than 100 times greater than
the typical angle change, then we ignore the estimate because
the error is considered to be too large. Here, the desired
signal modeled in (31) assumes that s̃k is an AR(2) process
with coefficients α1 = 1.2728, α2 = −0.81, and σ 2

ξ = 1.
The received signal for each sensor is simulated with three
interfering signals that have a signal-to-interference power
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Fig. 5. DOA estimation bias due to estimation lag caused by the average
operation over K samples in Case 3.

ratio (SIR) of 20 dB and background AWGN with an SNR
of 30 dB.

A. DOA Estimation

Although the proposed DOA tracking algorithm can produce
an unbiased estimate for a fixed target source, a small amount
of estimation bias cannot be avoided for a time-varying DOA
because of the average operation (low pass filtering) over
K samples. However, almost no SINR degradation observed
from our simulation results because of the remarkably little
DOA estimation bias. Fig. 5 shows, as an example, the DOA
estimation bias for the AKF algorithm in Case 3. In Case 3,
the target source makes two turns, specifically at snapshots
0.5 × 105 and 1.3 × 105. Because the average operation can
lead to an estimation lag with respect to the actual DOA
with a DOA change rate of approximately 7◦/s, a small
underestimation bias of less than 0.025◦ can be observed
before snapshot 0.5×105 and after snapshot 1.3×105. Between
snapshots 0.5 × 105 and 1.3 × 105, an overestimation bias is
observed. In addition, two regions of larger estimation bias
appear when the target source moves in the directions of the
interfering signals because the desired signal is destroyed by
the interfering signals.

Figure 6 plots the root mean square error (RMSE) of DOA
estimation of the three cases with the proposed DOA tracking
method for the AKF algorithm. As illustrated in Fig. 6,
the target source in Case 1 remains fixed such that the RMSE
is approximately 0.025◦. For Cases 2 and 3, the moving source
leads to a worse RMSE than that for Case 1 because the
GSC output error signal has a larger variance when the target
source moves. Larger estimation RMSE is caused by larger
DOA estimation bias due to interfering signals; for example,
in Case 3, two RMSE peaks occur near snapshots 1.2 × 105

and 1.6 × 105. Although the DOA tracking performance is
degraded as the target source moves in the directions of
interfering signals, the estimation accuracy remains within
a 0.2◦ RMSE and does not result in tracking failure, even
though a performance loss of SIR 15 dB is caused by the
interfering signals. According to the results of the simulation
analysis of SIR performance, the estimation accuracy of the

Fig. 6. DOA estimation RMSE of the target source for the three
simulation cases.

Fig. 7. SINR performance of the adaptive beamforming algorithms
employed with the proposed DOA tracking method for Case 1.

proposed DOA tracking method is satsfactory for the GSC
with a direction change rate of 7◦/s.

B. SINR Performance

Case 1: In Case 1, we consider the location of the target
source to be fixed in the direction of 0◦. Assume that three
interfering signals are located at the directions of −10◦, 15◦,
and 50◦. We then compare the SINR performance of AKF, KF,
and RLS algorithms when combined with the proposed DOA
estimation method. The results are shown in Fig. 7, where the
performance of the Wiener solution with a known DOA is
also plotted as the performance bound. Apparently, the AKF
algorithm reasonably demonstrates better SINR performance
than the RLS and KF algorithms because the source signal sk

is removed from the GSC output error signal. When combined
with the proposed DOA tracking method, the steady-state
SINR performance of the AKF shows almost no degradation.
However, the RLS and KF algorithms have a small SINR per-
formance degradation. The main reason for this performance
degradation is that the AKF algorithm removes the desired
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Fig. 8. Beam pattern of the adaptive beamforming algorithms for Case1.
Three interfering signals are located in the directions of −10◦, 15◦,
and 50◦.

Fig. 9. SINR performance of the three adaptive beamforming algorithms
with the proposed DOA tracking method for Case 2.

signal from the GSC output such that a smaller GSC output
error signal improves the convergence performance.

Fig. 8 displays the beam patterns of the Wiener solution,
AKF, RLS, and KF beamforming algorithms. Notably, the tar-
get source remains fixed in the direction of 0◦, and three
interfering signals are moving in the directions of −10◦, 15◦,
and 50◦. All of the beam patterns exhibit three common nulls
in the directions of interfering signals and maintain the unity
gain at 0◦, indicating that the three algorithms can emphasize
the received signal in the direction of the target source and
properly eliminate the interference in the directions of the
interfering signals.

Case 2: Fig. 9 presents the SINR performance of the AKF,
KF, and RLS algorithms in Case 2, all combined with the
proposed DOA tracking method. Because the Wiener solution
requires the stationary value Rrr of the input signal rk , which
varies with the DOA, the SINR becomes poor when the
target DOA is time-varying; consequently, its performance is

Fig. 10. SINR performance of the three adaptive beamforming algo-
rithms with the proposed DOA tracking method for Case 3.

not plotted for comparison. If DOA tracking is not imple-
mented for the adaptive GSC algorithms, then all of the adap-
tive algorithms demonstrate severe performance degradation
because the DOA has a mismatch of 7◦/s in this case. The
AKF algorithm exhibits noticeably better performance, namely
because the error signal for the adaptation does not contain
the desired signal such that the weighting vector wk can be
better estimated to cancel out interfering signals. Because
two interfering signals are present on the trajectory of the
moving target source, an SINR performance degradation of
approximately 15 dB can be observed at two points. The
first degradation point has a duration of approximately 1.31 s,
and the second one has a duration of approximately 1.77 s.
The second null takes longer than the first because the angular
resolution (3-dB gain) of the ULA beamformer has a greater
negative effect at 50◦ than at 15◦, leading the 50◦ interfering
signal to demonstrate a longer interference duration than
the 15◦ interfering signal for circular motion at a constant
speed.

Case 3: Fig. 10 compares the SINR performance of all algo-
rithms used in combination with the proposed DOA tracking
method for Case 3. In this case, the target source moves twice
through the interfering signal in the direction of −7◦. Each of
the two nulls takes approximately 1.23 s of the 10-s trajectory.
The AKF still achieves better SINR performance than do the
RLS and KF algorithms.

C. Influence of the Main System Parameters
We next explore the influence of the system parameters,

namely sampling rate S and number of arrays P , by using the
AKF algorithm with the proposed DOA tracking method with
the simulation setup of Case 2.

Because the adaptive beamforming algorithms require a
sufficient number of samples to calculate the beamforming
coefficients for a time-varying DOA to achieve satisfactory
SINR performance, the sampling rate depends on the move-
ment speed of the target source. In our simulation, the source
has a speed of approximately 7◦/s. Figure 11 shows that
an SINR greater than 30 dB can be reached for the entire
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Fig. 11. SINR of the AKF algorithm for different sampling rates.

Fig. 12. SINR of the AKF algorithm for different numbers of sensors.

simulation duration with a sampling rate exceding 20 KHz.
If S = 10KHz, then slow response and performance degrada-
tion can be observed from the SINR evaluation. If S is larger
than 20 KHz, then the SINR performance does not improve
significantly.

The vector size of the beamforming coefficient wk is related
to the number of sensors P; that is, the resolution of the
beamformer is determined by P . Figure 12 shows the SINR
performance of the AKF algorithm for different P values.
In our simulation setup, P = 8 results in insufficient reso-
lution, thus causing considerable performance degradation in
the directions of interfering signals. As the number of sensors
increases, the duration of performance degradation decreases.
Although increasing P can improve the SINR performance,
the cost is also increased. In our simulation cases, because P
is larger than 16, no significant difference in performance is
observed.

VI. CONCLUSION

This study proposes a new DOA tracking method and AKF
algorithm for GSC beamforming that can be applied to sensor

arrays for enhancing the signal of a moving target source when
received along with interfering signals. The SNR analysis of
the GSC in the presence of a DOA mismatch demonstrates that
a DOA mismatch reduces the SNR of the GSC. The proposed
DOA tracking method does not involve the large amount of
computation required by conventional offline DOA estimation
algorithms such as the MUSIC algorithm or ESPRIT; hence,
the computational load of DSP for DOA estimation can be
reduced. The new AKF algorithm improves GSC convergence
performance by eliminating the influence of the desired signal
from the GSC output error signal. The simulation results
indicate that the AKF algorithm combined with the proposed
DOA method achieves better SINR performance than the KF
and RLS algorithms.

APPENDIX

DERIVATIONS OF (22)−(23)

First consider the term EB(θ̂n)wn in (21). By using (18) and
a∗

0(θ̂k) = 1, we obtain

EB(θ̂n)wn = jκψn cos(θ̂n)

×

⎡
⎢⎢⎢⎢⎣

a∗
1(θ̂n) · · · (P−1)a∗

P−1(θ̂n)

0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0

⎤
⎥⎥⎥⎥⎦×

⎡
⎢⎢⎣
w0,n
w1,n
...

wP−2,n

⎤
⎥⎥⎦

= jκψn cos(θ̂n)

⎡
⎢⎢⎢⎣

∑P−1
p=1 pa∗

p(θ̂n)wp−1,n

0
...
0

⎤
⎥⎥⎥⎦. (47)

Hence,

ef(θ̂n)− EB(θ̂n)wn

=

⎡
⎢⎢⎢⎣

e f,0(θ̂n)− jκψn cos(θ̂n)
∑P−1

p=1 pa∗
p(θ̂n)wp−1,n

e f,1(θ̂n)
...

e f,P−1(θ̂n).

⎤
⎥⎥⎥⎦, (48)

which can be rewritten as follows by using (14) and (15):[
ef(θ̂n)− EB(θ̂n)wn

]H
rn

=

⎡
⎢⎢⎢⎣

e f,0(θ̂n)− jκψn cos(θ̂n)
∑P−1

p=1 pa∗
p(θ̂n)wp−1,n

e f,1(θ̂n)
...

e f,P−1(θ̂n)

⎤
⎥⎥⎥⎦

H

×

⎡
⎢⎢⎢⎣

r0,n
r1,n
...

rP−1,n

⎤
⎥⎥⎥⎦

=
[
e∗

f,0(θ̂n)r0,n + · · · + e∗
f,P−1(θ̂n)rP−1,n

]

+ jκψn cos(θ̂n)

P−1∑
p=1

pap(θ̂n)w
∗
p−1,nr0,n
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= 1

P

[
0 − jκψn cos(θ̂n)a

∗
1(θ̂k)r1,n − · · ·

− j (P − 1)κψn cos(θ̂n)a
∗
P−1(θ̂k)rP−1,n

]

+ jκψn cos(θ̂n)

P−1∑
p=1

pap(θ̂n)w
∗
p−1,nr0,n

= − 1

P
× jκψn cos(θ̂n)

P−1∑
p=1

pa∗
p(θ̂n)rp,n

+ jκψn cos(θ̂n)

P−1∑
p=1

pap(θ̂n)w
∗
p−1,nr0,n

= jκψn cos(θ̂n)

P−1∑
p=1

p
[
ap(θ̂n)w

∗
p−1,nr0,n − 1

P
a∗

p(θ̂n)rp,n
]
.
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