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Image Contrast Enhancement Based on a Histogram
Transformation of Local Standard Deviation

Dah-Chung Chang* and Wen-Rong Wu,Member, IEEE

Abstract—The adaptive contrast enhancement (ACE) algo-
rithm, which uses contrast gains (CG’s) to adjust the high-
frequency components of images, is a well-known technique for
medical image processing. Conventionally, the CG is either a
constant or inversely proportional to the local standard deviation
(LSD). However, it is known that conventional approaches entail
noise overenhancement and ringing artifacts. In this paper, we
present a new ACE algorithm that eliminates these problems.
First, a mathematical model for the LSD distribution is proposed
by extending Hunt’s image model. Then, the CG is formulated
as a function of the LSD. The function, which is nonlinear, is
determined by the transformation between the LSD histogram
and a desired LSD distribution. Using our formulation, it can be
shown that conventional ACE’s use linear functions to compute
the new CG’s. It is the proposed nonlinear function that produces
an adequate CG resulting in little noise overenhancement and
fewer ringing artifacts. Finally, simulations using some X-ray
images are provided to demonstrate the effectiveness of our new
algorithm.

Index Terms—Adaptive contrast enhancement, histogram
transformation, local standard deviation (LSD), radiography.

I. INTRODUCTION

I MAGE contrast enhancement is important in medical ap-
plications. This is due to the fact that visual examination of

medical images is essential in the diagnosis of many diseases.
In applications such as chest radiography and mammography
[1], [2], the image contrast is inherently low due to the small
differences in the X-ray attenuation coefficients. The problem
is further complicated if an image consists of several regions
with different X-ray attenuation characteristics. For example,
in chest radiography, the mediastinum and the lung field have
different exposures. It is usually desirable to enhance the
details in both regions simultaneously. Thus, a considerable
amount of research has focused on this subject. The devel-
opment of enhancement algorithms is based on some visual
principles. It is known that the human eye is sensitive to
high-frequency signals. Although details usually correspond to
high-frequency signals, their visibility becomes low when they
are embedded in strong low-frequency background signals.
Thus, properly amplifying the high-frequency components will
improve visual perception and help diagnosis.
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Linear contrast stretching and histogram equalization are
two widely utilized methods for global image enhancement
[4]–[7]. The former linearly adjusts an image’s dynamic range,
and the latter uses the input-to-output mapping relation ob-
tained from the integral of the image histogram. Although
these methods are simple, they do not take into account local
details. In addition, global histogram equalization (GHE) has
the undesired effect of overemphasizing noise [19].

In diagnostic medical images, local details may be more
important than global contrast. Adaptive histogram equaliza-
tion (AHE) [8]–[11] and adaptive contrast enhancement (ACE)
[12]–[19] are two well-known local enhancement methods.
AHE algorithms map the gray values of pixels using the
relationships obtained from the local histograms. Although this
improves image contrast, it requires intensive computations
[8]. The bilinear interpolation technique was developed [9],
[10] to reduce the computational burden. It first divides images
into blocks, and then calculates the mapping functions of those
blocks. To enhance a particular pixel, the mapping function is
interpolated using four mapping functions associated with its
four neighboring blocks. In this algorithm, the only parameter
to be determined is the block size. To facilitate the visualiza-
tion of local details, the block size must be small, however,
small blocks increase computational requirements. Thus, there
is a tradeoff between the enhancement of local details and
computational loading when the interpolated AHE method is
used.

The ACE algorithms adopt unsharp masking techniques.
The details of which are explained as follows: an image is
separated into two components; the low-frequency unsharp
mask obtained by low-pass filtering of the image, and the
high-frequency component obtained by subtracting the unsharp
mask from the original image. The high-frequency component
is then amplified and added back to the unsharp mask to form
an enhanced image. The main concern in the ACE method is
how to determine the CG. There are two conventional methods
for calculating the CG. The simplest method is to use the gain
as a constant [12]–[16]. Due to the low-pass characteristic of
the unsharp mask, high-frequency components near the edges
are strongly enhanced by this method which results in so-
called “ringing artifacts.” The other method uses the CG as
an inverse proportional to the local standard deviation (LSD)
[17], [18]. The CG, thus, becomes large for regions with low
LSD values overenhancing background noise. Recently, Ji,
Sundareshan, and Roehrig [19] proposed separating detail and
smooth regions and using smaller gains for smooth regions.
Relying on the local image contrast and the observer’s just-
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noticeable-difference criterion, they developed an algorithm
substantially reducing the problems.

Note that the ringing effect and the noise overenhancement
are due to the use of very large CG’s in regions with low
spatial and high spatial activities. Details often correspond
to the regions with medium spatial activities. Thus, if a CG
can have larger values at the region with medium spatial
activity and smaller values at regions with low and high spatial
activities, ringing effects and noise overenhancement can be
reduced. In this research, we developed a new ACE algorithm
having these properties. First, we extended Hunt’s image
model [20], [21] and proposed a mathematical model for LSD
distributions. The new CG was then formulated as a function
of LSD. This function, which is nonlinear, was determined by
the transformation between the LSD histogram and a desired
LSD distribution. It can be shown that conventional ACE
algorithms are special cases of our method, where the mapping
functions between the new CG and LSD are linear. This
is why the algorithm we formulated reduces the effects of
ringing and noise enhancement. Finally, we applied the new
algorithm to enhance some X-ray images for demonstrating
its effectiveness.

This paper is organized as follows: Section II briefly reviews
the conventional ACE approaches. Section III describes our
LSD model. In Section IV, the new ACE algorithm is derived.
We show the simulation results in Section V. Conclusions are
drawn in Section VI.

II. CONVENTIONAL ACE ALGORITHMS

In this section, we review the conventional ACE algorithms.
The unsharp mask corresponds to the low-frequency compo-
nent of an image. For a particular pixel, this can be calculated
by averaging the gray values of pixels over a local area
centered at the pixel. Let be the gray value of a pixel
in an image. The local area is defined as a
window centered at where is an integer number. Note
that the window’s shape is not necessarily square. The local
mean, i.e., the low-frequency component, of a pixel can
be computed as

(1)

and the local variance as

(2)

The term is the LSD. Let denote the enhanced
value of . The ACE algorithm gives

(3)

The function is the CG. The CG is usually greater than
one, so that the high-frequency component
can be enhanced. Determination of is the crucial step
in the ACE algorithm.

The simplest process is to let be a constant, say
where . Then, (3) becomes

(4)

Using this constant gain, all high-frequency components are
amplified equally. As a consequence, those strong high-
frequency components will suffer from overenhancement.
An example is the ringing artifact in the vicinity of the edges.
Therefore, a special deemphasizing procedure must be added
to this algorithm [16]. For example, in chest radiography
applications [15], [16], the chest image is usually composed
of the mediastinum and the lung field. One way to reduce
overenhancement is to use different gains for these anatomical
fields. Another contrast enhancement application can be found
in Lee’s work [12]. For convenience, we refer to the algorithm
in (4) as the CGT algorithm.

Another method, that uses LSD information, was presented
in [17]

(5)

where is a constant. In this case, the CG itself is spatially
adaptive. It is inversely proportional to LSD. In edges or other
areas having high spatial activities, the LSD will be large. The
CG’s in those areas are then small. Thus, no ringing will result.
However, in smooth areas, the LSD will be small. Noise will
be amplified due to the large CG. Still, this approach requires
an additional procedure to limit the CG’s. Hereafter, we refer
to (5) as the IPLSD algorithm.

III. A M ODEL FOR IMAGE LSD DISTRIBUTION

A. The New Formulation

First, we rewrite the IPLSD algorithm in (5) as follows:

(6)

If we treat as a random variable, will be its
mean and its standard deviation. Equation (6) then
indicates that the LSD of the output image is normalized, in
other words, will have a standard deviation of for all

and . This is an interesting observation. The CGT algorithm
in (4) can also be rewritten in a similar form

(7)

We can generalize (6) and (7) resulting in a new class of ACE
algorithms described as follows:

(8)

To distinguish from the conventional contrast gain (CCG)
, we call the modified contrast gain (MCG).

Like the CCG, determines the output contrast. It can
be easily seen that, if , the contrast is
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(a)

(b)

Fig. 1. Illustration of the causes of ringing artifacts and noise overenhance-
ment in conventional ACE algorithms: (a)K(i; j) versus�x(i; j) and (b)
G(i; j) versus�x(i; j).

reduced, if , the contrast remains the same,
and if , the contrast is enhanced. Note that

(9)

for the IPLSD algorithm and

(10)

for the CGT algorithm. Both are linear functions of ,
and it is the linear functions that cause problems. We use Fig. 1
to illustrate this. In Fig. 1, we assume that has been
normalized (divided by a maximum value). Fig. 1(a) gives

versus for the original contrast, the CGT
algorithm, and the IPLSD algorithm; Fig. 1(b) gives
versus . As we mentioned in Section I, details often
correspond to regions with median . Thus, if a constant
gain for the CGT algorithm is adequate for detail regions, it
will be too large for other regions with large (marked

in Fig. 1) and this causes the ringing artifacts. By contrast,
if the gain function in the IPLSD algorithm is adequate for
detail regions, it will be too large for regions with small

(marked in Fig. 1), in which noise overenhance-
ment takes place. Also note that the IPLSD algorithm reduces

the contrast in the high region. From Fig. 1(a), we
can verify that the linear MCG is inadequate. If can
be a nonlinear function such that it is close to for
low and high and larger than for median

, the contrast enhancement problems associated with
conventional methods can be overcome. Apparently,
must be nonlinear.

Although the MCG in (8) can be a function of many
variables, we only focus on the situation in which it is a
function of . In this situation, the MCG is reduced to a
one-variable function denoted by . From (8), we see that
the LSD of is and the LSD of , denoted
by , is . Thus, can be interpreted as
a mapping function between and , i.e.,

(11)

Note that can be seen as a random variable having
a certain histogram and as another random variable
having its transformed histogram. If we have a desired LSD
histogram, the function can then be calculated. This
is to say that we can view the contrast enhancement as a
histogram equalization (or transformation) problem. The only
difference is that the input and output are LSD’s instead of
gray values. This is the foundation for our development of
new ACE algorithms. Using this interpretation, we can see
that the IPLSD algorithm transforms the LSD histogram into
an impulse function [positioned at ] and the CGT
algorithm linearly stretches the LSD histogram.

B. A Model for the LSD Distribution

The next problem is how to find the desired LSD histogram.
We can always use the uniform distribution as that in histogram
equalization. However, this is not appropriate since the LSD
will not be uniformly distributed for most natural images.
Below, we developed a model for LSD distributions. In [20],
Hunt proposed a Gaussian image model given by

(12)

where is a nonstationary mean process and is
a stationary white Gaussian process. Using Hunt’s model, we
first consider the distribution of the variance estimate. Here,
we assume that is deterministic and slowly varying.
As a consequence, can be accurately estimated and
ignored in the estimate of the variance. Let be the true
variance of and [instead of for simplicity]
be the variance calculated from the samples of
in the local window. From mathematical statistics [22], we
find that

(13)

where is the chi-square distribution with degrees
of freedom. For a large , will approach a Gaussian
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(a) (b)

(c) (d)

Fig. 2. (a)–(d) Four of the eight test images.

distribution with mean and variance

(14)

where denotes the probability density function. Equation
(14) implies that

(15)

Although Hunt’s Gaussian model is simple, it may not be
able to model realistic images well. Image signals may be
nonstationary in many ways [23] and it is difficult to find the
true LSD distributions. However, note thatis obtained by
averaging random variables. If is large enough, the
shape of the LSD distribution should not deviate from that in

(15) by much. Thus, one reasonable extension for (15) can be

(16)

where , , and are distribution parameters and is a
normalized constant. Let , then is the LSD. From
(16), the LSD distribution is obtained as follows:

(17)

One may ask “how good is the LSD model in (17)?”
We have performed some experiments to evaluate this. We
chose eight typical images used in general and medical image
processing (Fig. 2). We first computed the LSD histograms of
these images. Then, for each image, we used the least-squares
(LS) method to fit the LSD histograms. The LS method solves
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(e) (f)

(g) (h)

Fig. 2 (Continued.) (e)–(h) Four of the eight test images.

the following optimization problem

Min (18)

where is the LSD model in (17) and is the LSD
histogram. Assume that the LSD has been quantized into
levels. Rewriting the problem in discrete type, we have

Min (19)

Using (19), we found out the parameters of LSD distributions

and they were listed in Table I. The corresponding LSD
distributions modeled by (17) and the LSD histograms are
shown in Fig. 3. From the Table I, we find that the modeling
errors ’s are on the order of 10 . It seems that our modeling
has sufficiently good results in spite of the image contents. We
have also tried different window sizes ranging from 33 to
101 101 for the test image (d) and found little influence
on modeling error. We consider this an important finding
since it will be difficult to find a simple model for the gray-
scale histogram. From empirical results, we finally came to a
conclusion that, our LSD model in (17) is applicable to many
natural images.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 3. The LSD histograms of the eight test images in Fig. 2 and their LS-fitted distributions.

It is relevant to note here that the parameters of the LSD
distribution for a given image is strongly dependent on the
window size. An experiment for the test image (d) is shown
in Fig. 4. As we can see the larger the window size, the wider

the LSD distribution will spread. This result can be explained
as follows. When we calculate the LSD, we implicitly assume
that pixels inside the window are stationary. However, this
assumption is not valid for realistic images. In addition, there
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TABLE I
PARAMETERS OF THE LS-FITTED DISTRIBUTIONS;

INITIAL VALUES ARE THOSE INSIDE PARENTHESES

Fig. 4. The LS-fitted LSD distributions of test image Fig. 2(d) in Fig. 2 for
varying window sizes.

is a strong correlation between the pixels in a neighborhood.
Thus, the computed LSD value will increase as the window
size is increased. With this understanding, one may wonder
how to determine the window size. There are two steps we can
follow. First, we have to define the details. This is important
since for different purposes, the definition of details may
be different. As we mentioned in Section I, we seek details
corresponding to regions with median LSD’s. Thus, the second
step is to choose a window size that can produce median LSD
values for the interested details. Apparently, this choice is
dependent on the detail pattern as well as the image resolution.
For the same image, if the resolution is increased, the window
size should also be increased.

Using our model, a low-contrast image indicates only that
the LSD has a small dynamic range. Thus, by transforming the
LSD to another variable having a large dynamic range, contrast
enhancement is achieved. The problem is how do we perform
the transformation. Note that the transformed LSD distribution
can have any shape. There are no theoretical results showing
that one particular transformation will be better than another.

Although we can perform extensive subjective evaluations to
determine the best transformation function, this will be time-
consuming. Here, we propose a simple solution. We use the
distribution function described in (17) as the desired LSD
distribution. There are at least two reasons for this approach.
From experiments, we found that the LSD’s of natural images,
regardless if the contrast is good or poor, can be modeled
well by (17). Thus, if we use (17) as the transformed LSD
distribution, the enhanced image may be seen as the result of
imaging a natural scene under conditions of good lighting. It
is our hope that the enhanced image will not only be good for
diagnosis, but also look natural. Our formulation is similar
to the conventional histogram transformation. The problem
in the conventional histogram transformation is that there is
no suitable histogram model to guide the transformation. The
histogram of an image can have an arbitrary shape. It will be
difficult to construct a simple distribution that can model the
histogram adequately. In the following section, we outline a
method that performs the proposed transformation easily.

IV. CONTRAST ENHANCEMENT BASED ON

THE LSD HISTOGRAM TRANSFORMATION

In the preceding section, we established a model describing
the image LSD distribution, and showed how to use the LS
method to find appropriate parameters. Contrast enhancement
can be achieved using LSD histogram transformation. In other
words, we want the LSD histogram to have a different set of,

, and such that the transformed LSD has a larger dynamic
range. Contrast gain can then be obtained from the mapping
relationship between LSD’s before and after transformation.

A. LSD Transformation

Let be the image LSD histogram before transfor-
mation and the LSD distribution after transformation.
As mentioned previously, and is the MCG
function. From the probability theory, we have

(20)

Since is a monotonic function, and and are
nonnegative, is a positive value. The absolute value
sign in (20) can be ignored. Integrating both sides, the equation
can be represented as

(21)

Assume that the desired parameters in (17) have been deter-
mined, say, , , and . Now, approximating the LSD
histogram for the output image as the model in (17), we have

(22)

Let the LSD be quantized into levels and denote the
quantized LSD before and after transformation as and

, , respectively. Rewriting (21) in its
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Fig. 5. The flowchart for computing the LSD transformation.

discrete form, we have

(23)

where is the total number of pixels in the image. We
assume . The transformation function , which
represents the transformation from to , can then
be obtained by solving (23). Note that the unknown in (23)
is , . To obtain accurate solutions
for is complicated and not necessary. Here, we use a
simple method depicted by the flowchart in Fig. 5. Here, the
increment was set at 10 . We can obtain more accurate
results by using a smaller value at the cost of higher
computing time.

We can also use the other transformation method, which
replaces the empirical histogram with the LS-fitted distribu-
tion. Let the LS-fitted parameters in (17) be, , and .
Equation (23) then becomes

(24)

If the LSD is at the th level, i.e., , the
MCG in (8) is then . This completes the derivation of
our ACE algorithm.

B. Determination of Parameters

The final problem is how to choose appropriate parameters
for (17) in order to perform the LSD transformation. Since
there are three parameters, , and , direct trial-and-error
requires a lot of work. Here, we developed a simple method
to overcome this problem. Our idea is to modify the gain
function in the CGT algorithm using the proposed LSD model.
Consider the CGT algorithm described by where

is a constant. Then

(25)

where and

(26)

Thus, the CGT algorithm simultaneously increasesand . As
mentioned previously, the CGT algorithm suffers the ringing
effect. To eliminate this problem, CG in the high LSD region
(marked in Fig. 1) must be reduced. This can be achieved by
increasing . It can be seen that controls the characteristics
of the distribution tail. The larger the , the shorter the
distribution tail and the smaller the CG in the high LSD region.
Parameter has a large influence on the mode position of the
LSD distribution. If is increased, the mode position moves
farther from the origin. Then, the MCG will have a larger value
in the low LSD regions. Note that increasingwill magnify
the MCG in the low LSD region and this is not desirable.
Thus, should be decreased to compensate for this effect.

Using the procedure outlined above, we can adjust the three
parameters to obtain the desired transformation. However, it
is found that directly adjusting , , and is not efficient.
Using the result in (26), we now propose another way to do
the job. Let

(27)

Instead of , , and , we use , , and to obtain the
desired transformation. Experiments show that this approach
greatly facilitates the parameter determination. From the dis-
cussion in the last paragraph, it is obvious that , and

. We now summarize the procedure for parameter
determination as follows.

1) Choose a proper constant.
2) Choose such that the MCG can suppress the ringing

artifacts in the high LSD region.
3) Choose such that the high contrast region can be

moved to the desired place.

To obtain the best results, this procedure can be carried out
repeatedly. From our experience, we found that typical values
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Fig. 6. The modeled LSD distributions for varying parametersA, E, andF .

Fig. 7. The characteristics of parameter� [A = 1; 2; 3; 4 for (a)–(d)].

for the parameters can be , , and
.

We next provide examples to show the influences of param-
eters , , and on the MCG function. This will be helpful
for understanding the proposed procedure. Let ,

, and . In Fig. 7, we plot the MCG’s
for varying ( and ). As we expect, the larger
the , the smaller the MCG in the high LSD region. We also
plot the transformed LSD distributions in Fig. 6. From the
distributions labeled by (a) and (b) in the figure, we can see
that does control the tail characteristics. The MCG function
for varying is shown in Fig. 8 ( and ).
The transformed LSD distributions for two different’s are
shown in Fig. 6, in which they are labeled as (a) and (c). The
LSD distribution shapes look alike, but the mode positions
are clearly different. In Fig. 9, we plot the MCG function for
varying ( and ). As we can see, the role of

is very similar to the constant gain in the CGT algorithm.
The MCG functions are almost linear and the larger the, the

Fig. 8. The characteristics of parameter
 [F = 1; 5; 7; 10 for (a)–(d)].

Fig. 9. The characteristics of parameter� [E = 1; 5; 10; 15 for (a)–(d)].

steeper the MCG function. This is not surprising sinceis
small in this case. The transformed LSD distributions for two
different ’s are shown in Fig. 6, in which they are labeled
(a) and (d). We find that the one with the largerlooks like
a linear stretch of the one with the smaller.

Once the parameters are determined, we can perform
the LSD transformation to enhance the image. We can
now summarize the whole procedure for implementing our
scheme.

1) Calculate the LSD histogram of the image and use the
LS method to find the corresponding parameters for (17).

2) Find the desired parameters, , and using the
procedure outlined above.

3) Perform the LSD transformation in (23) using (27) and
find the mapping function.

4) Use the mapping function to carry out the enhancement
described in (8).
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Fig. 10. The CGK(i; j): (a) the CGT algorithm (C = 1), (b) the CGT
algorithm (C = 4), (c) the IPLSD algorithm (D = 0:8), and (d) the proposed
algorithm.

Our method is based on the LSD histogram transformation.
In other words, images with the same LSD histogram may
share the same mapping functions. If the window size and
image resolution remain the same, we can expect that LSD
histograms will be similar for the same types of images
taken from the same imaging system. Thus, we require only
one common nonlinear LSD mapping function. To reduce
computations, the MCG function can be tabulated in advance
of processing. Then, the computational complexity of the
proposed algorithm is identical to the conventional IPLSD
algorithm. Note that both algorithms have to compute local
means as well as LSD’s. In contrast, the CGT algorithm
needs only to compute the local means. Thus, the CGT
algorithm requires fewer computations. To further reduce the
computational complexity of the proposed algorithm, some fast
algorithms for local mean and LSD computations [17] can be
applied.

V. SIMULATIONS

The chest X-ray image in Fig. 2(d) was used to perform
simulations. The image size was 911911 and the gray-scale
consisted of 256 levels. The window size for the local mean
and LSD calculation was chosen as 2121. The details to
be enhanced were lung lesions and indistinct ribbed patterns.
Here we assumed that global contrast was acceptable and
focused only on the enhancement of the local contrast. The
MCG used for the simulations are shown in Fig. 10.
Since the cumulative value of the LSD histogram was almost
one when the LSD [as shown in Fig. 3(d)], the LSD was
normalized with respect to the value of 30. Pixels with LSD’s
beyond 30 had their CG’s simply clipped. The four MCG’s in
Fig. 10 correspond to the following algorithms.

a) The CGT algorithm in (4) with .
b) The CGT algorithm in (4) with .
c) The IPLSD algorithm in (5) with .
d) The proposed algorithm with parameters of ,

, and .

Fig. 11. The CGG(i; j): (a) the CGT algorithm (C = 4), (b) the clipped
IPLSD algorithm, and (c) the proposed algorithm.

To avoid large noise amplification, the IPLSD gain was clipped
at a maximum of 5.5 and a minimum of
1.5. The corresponding CCG functions of the test algorithms
are also depicted in Fig. 11. It is apparent that the proposed
algorithm has high in the detail region (median LSD’s)
and has small in the smooth and edge regions (small
and large LSD’s).

The enhanced images are shown in Fig. 12. A rectangle
with gray value of 50 was inserted into the original image
to evaluate the ringing effect of the test algorithms. From
Fig. 12, we find that the CGT algorithm has a severe ringing
artifact. This is due to the high constant CG in the edge
region. The ringing effect does not show up in the IPLSD
and the proposed algorithm. Note that the IPLSD algorithm
renders heavy enhancement of normal vascular details. The
overemphasized vascular details in the lungs may look like
calcification and affect the diagnosis of lung lesions [16]. In
our algorithm, the vascular structure is properly handled and
the enhanced result does not cause a disturbance.

A simple quantitative analysis was used to evaluate en-
hancement quality [25], [26]. The image was first segmented
into three regions: smooth, detail, and edge regions. The
average local variances (ALV’s) in the three regions were then
calculated as quality measures: the ALV in the smooth region
(ALVS), the ALV in the detail region (ALVD), and the ALV
in the edge region (ALVE). The ALV in a certain region is
defined as follows:

ALV (28)

where is the region, is the number of pixels in , and
is the local variance defined in (2). It is apparent

that a good enhancement algorithm should give reasonably
high ALVD and low ALVS and ALVE. In our analysis, image
segmentation was performed by LSD thresholding; each pixel
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(a) (b)

(c) (d)

Fig. 12. Results of contrast enhancement for test image Fig. 2(d): (a) original, (b) the CGT algorithm, (c) the IPLSD algorithm, and (d) the proposed algorithm.

was classified according to the following rules:

LSD Smooth Region

LSD Detail Region

LSD Edge Region (29)

where and are two parameters that can be chosen to
meet different requirements. In our case, we let and

. Using this simple segmentation scheme, we found
that pixels of 28.12% are in the smooth region, 66.67% in the
detail region, and 5.21% in the edge region. These regions are
shown in Fig. 13. Since we assumed that the vascular structure
is not critical, the smooth region was chosen to include some
vascular details. The three measures were calculated and listed
in Table II. It is seen that the ALVE for the CGT algorithm is
significantly higher than others. This indicates severe ringing
artifacts. The ALVD for the IPLSD algorithm is close to that
for the proposed algorithms, however, the ALVS for the IPLSD
algorithm is much larger than that for the proposed algorithm.
This explains why the vascular structure is overenhanced in

Fig. 13. Segmentation of test image (d) in Fig. 2; smooth (dark) region,
detail (gray) region, and edge (white) region.

the IPLSD algorithm. Note that the performance of these three
measures strongly depend on the segmentation scheme and
parameter setting. Although our segmentation scheme
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(a) (b)

(c) (d)

Fig. 14. Results of contrast enhancement for test image (d) in Fig. 2: (a) original image with 2% uniform noise, (b) the CGT algorithm, (c) the IPLSD
algorithm, and (d) the proposed algorithm.

TABLE II
COMPARISON OF THREE ALV M EASURES FOR THETEST ALGORITHMS

is simple, these measures still provide useful information for
evaluation of the contrast enhancement.

To further test the noise enhancement property, we randomly
added a 2% uniform noise with values between zero and six
to the image. Note that the early calcification lesions usually
cause white spots in X-ray images. To show the averse effect
of noise overenhancement, we only considered noise with
positive values. For better visibility, each noise sample covered
four contiguous pixels. The noisy and enhanced images are
shown in Fig. 14. From this figure, we find that noise is almost

invisible before enhancement. However, it becomes apparent
after enhancement. It is clear that the IPLSD algorithm is
more likely to enhance noise. The proposed algorithm does
not enhance noise in the small and high LSD regions. From
these results, we can conclude that the nonlinear CG is more
effective and can properly handle the ringing artifacts and
noise overenhancement problem.

We have shown that the proposed algorithm is useful
in processing chest X-ray images. To test the effectiveness
of the proposed algorithm on other types of images, we
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(a)

(b)

(c)

Fig. 15. Results of contrast enhancement for test images Fig. 2(f)–(h): (a)
thorax CT, (b) cerebral angiography, and (c) mammography.

also conducted simulations using the native thorax computed
tomography (CT), cerebral angiography, and mammography
images shown in Fig. 2(f)–(h). The parameters ( ) used
for the enhancement were (5, 25, 3), (5, 25, 3), and (3.5, 16,

3), respectively. The enhanced images are shown in Fig. 15.
From these images, we found that the details were efficiently
enhanced.

VI. CONCLUSIONS

The ACE algorithm is a well-known technique for medical
image processing. Conventional approaches suffer from noise
overenhancement and ringing artifacts. In this paper, we pre-
sented a new ACE algorithm to overcome these problems. We
first proposed a mathematical model for the LSD distribution.
Based on this model, we formulated ACE as an LSD histogram
transformation problem. There are three parameters in our
model which could be chosen to meet different requirements.
Finally, detailed simulations were carried out using a chest
X-ray image, showing that our method adequately enhances
details and produces little noise overenhancement and few
ringing artifacts. Other types of medical images are also tried
and effectively enhanced results were also observed. Note that
we can separate an image into several regions and use different
gain functions for different regions. This may produce even
better results. Research in this area is continuing.
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