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Image Contrast Enhancement Based on a Histogram
Transformation of Local Standard Deviation

Dah-Chung Chang* and Wen-Rong WMgember, IEEE

_ Abstract—The adaptive contrast enhancement (ACE) algo-  Linear contrast stretching and histogram egualization are
rithm, which uses contrast gains (CG's) to adjust the high- two widely utilized methods for global image enhancement

frequency components of images, is a well-known technique for 47 ; ; ; ) ;
medical image processing. Conventionally, the CG is either a [41-7]. The former linearly adjusts an image SQgnaMic range,

constant or inversely proportional to the local standard deviation and the latter uses the input-to-putput mapping relation ob-
(LSD). However, it is known that conventional approaches entail tained from the integral of the image histogram. Although
noise overenhancement and ringing artifacts. In this paper, we these methods are simple, they do rot take into account local

present a new ACE algorithm that eliminates these problems. qetails, In addition, global histogram equalization (GHE) has
First, a mathematical model for the LSD distribution is proposed the undesired effect of overefnbhasizina noise 119
by extending Hunt's image model. Then, the CG is formulated P g [19].

as a function of the LSD. The function, which is nonlinear, is In diagnostic medical images, local details may be more
determined by the transformation between the LSD histogram important than global contrast. Adaptive histogram equaliza-
and a desired LSD distribution. Using our formulation, it can be  tion (AHE) [8]-[11]@nd adaptive contrast enhancement (ACE)

shown that conventional ACE’s use linear functions to compute [12]-[19] are two well-kiown local enhancement methods
the new CG'’s. It is the proposed nonlinear function that produces '

an adequate CG resulting in little noise overenhancement and AHE algorithins ‘map the gray values of pixels using the
fewer ringing artifacts. Finally, simulations using some X-ray relationships obtained from the local histograms. Although this

images are provided to demonstrate the effectiveness of our newimproves image contrast, it requires intensive computations
algorithm. [8]. The bilinear interpolation technique was developed [9],
Index Terms—Adaptive contrast enhancement, histogram [10] to reduce the computational burden. It first divides images

transformation, local standard deviation (LSD), radiography. into blocks, and then calculates the mapping functions of those
blocks. To enhance a particular pixel, the mapping function is
|. INTRODUCTION interpolated using four mapping functions associated with its

four neighboring blocks. In this algorithm, the only parameter

I MAGE contrast enhancement is important in medical ais pe determined is the block size. To facilitate the visualiza-

plications. This is due to the fact that visual examination (?fon of local details, the block size must be small, however,

L i all blocks increase computational requirements. Thus, there
In applications such as chest radiography and mammograply, - qeoff between the enhancement of local details and

[1], [2], the image contrast is inherently low-due ‘to the sma . : ; :
differences in the X-ray attenuation coefiicients. The proble”(])mputatmnal loading when the interpolated AHE method is

) ; d . . . ~US
is further complicated if an image cornisists of several regions . Acg algorithms adopt unsharp masking technigues.

with different X-ray attenuation characteristics. For examplq_h . . . ) . .
. . . ! e details of which are explained as follows: an image is
in chest radiography, the mediastinum and the lung field have

different exposures. It is usually” desirable to enhance tﬁgparated into two components; the low-frequency unsharp

details in both regions simultaneously. Thus, a considera eaSk obtained by low-pass filtering of the image, and the

amount of research has focused on this subject. The de gh;(frfequetr;]cy cqmp&nlqent obt?_ige?].bis}ubtracting the unshartp
opment of enhancement algorithms is based on some vis ﬁ rom |'f('a 3r|g|r:ja ggageb ke Igh i reql;ency corrk1por;en
principles. It is known that the human eye is sensitive {§ then amplified and added back to the unsharp mask to form

high-frequency signals. Although details usually correspond & €nhanced image. The main concern in the ACE method is
high-frequency signals, their visibility becomes low when th(:P‘OW to determine the CG. There are two conventional methods
are embedded. in strong low-frequency background signafd' calculating the CG. The simplest method is to use th_e gain
Thus, properly amplifying the high-frequency components wiffS @ constant [12]—[1_6]. Due to the low-pass characteristic of
imprave visual perception and help diagnosis. the unsharp mask, hlgh—frequgncy components near thg edges
are strongly enhanced by this method which results in so-
Manscript received February 6, 1997; revised June 15, 1998. The Assoc@led “ringing artifacts.” The other method uses the CG as
Editor responsible for coordinating the review of this paper and recommendigg, inverse proportional to the local standard deviation (LSD)
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noticeable-difference criterion, they developed an algorithm The simplest process is to 1€z, j) be a constant, sa§/

substantially reducing the problems. where C > 1. Then, (3) becomes
Note that the ringing effect and the noise overenhancement o o o o
are due to the use of very large CG’s in regions with low [, ) = ma(i, 3) + Cla(i, ) = ma (i, J)]- (4)

spatial and high spatial activities. Details often correspond . , ) )
to the regions with medium spatial activities. Thus, if a C&/SINg this constant gain, all high-frequency components-are

can have larger values at the region with medium spat@Plified equally. As a consequence, those strong high-
activity and smaller values at regions with low and high spatiffduency components will suffer from overenhancemenit.
activities, ringing effects and noise overenhancement can & €xample is the ringing artifact in the vicinity of the edges.
reduced. In this research, we developed a new ACE algoritﬂ—rﬂer?fore' a_speC|aI deemphasizing prpcedure mus_t be added
having these properties. First, we extended Hunt's imalf this algorithm [16]. For example, in chest radiography
model [20], [21] and proposed a mathematical model for LspPPlications [15], [16], the chest image is usually composed
distributions. The new CG was then formulated as a functi@l e mediastinum and the lung field. One way to reduce
of LSD. This function, which is nonlinear, was determined b verenhancement is to use different gains for these anatomical
the transformation between the LSD histogram and a desif&gds- Another contrast enhancement application can be found
LSD distribution. It can be shown that conventional ACE" Le€'s work [12]. For convenience, we refer to the algorithm

algorithms are special cases of our method, where the mapplihd®) as the CGT algorithm. _ _

functions between the new CG and LSD are linear. This nother method, that uses LSD . information, was presented
is why the algorithm we formulated reduces the effects g 171

ringing and noise enhancement. Finally, we applied the new @
algorithm to enhance some X-ray images for demonstrating S, 3) = ma(; g) o+
its effectiveness.

This paper is organized as follows: Section Il briefly reviewghere D is a constant. In this case, the CG itself is spatially
the conventional ACE approaches. Section Ill describes caglaptive. Itis inversely proportional to LSD. In edges or other
LSD model. In Section IV, the new ACE algorithm is derivedareas having high spatial activities, the LSD will be large. The
We show the simulation results in Section V. Conclusions af&G’s in those areas are then small. Thus, no ringing will result.
drawn in Section VI. However, in smooth areas, the LSD will be small. Noise will
be amplified due to the large CG. Sitill, this approach requires
an additional procedure to limit the CG’s. Hereafter, we refer

to'(5) as the IPLSD algorithm.
In this section, we review the conventional ACE algorithms.

The unsharp mask corresponds to the low-frequency compo-
nent of an image. For a particular pixel, this can be caiculated
by averaging the gray values of pixels over a local area _
centered at the pixel. Let(4, j) be the gray value of a pixel A- The New Formulation

ou(i, J) [x(i, §) — ma(i, j)]  (5)

Il. CONVENTIONAL ACE ALGORITHMS

I1l. A M ODEL FOR IMAGE LSD DISTRIBUTION

in an image. The local area is defined éfa+1) x (2n+1) First, we rewrite the IPLSD algorithm in (5) as follows:
window centered afi, j) wheren is an integer number. Note o o

that the window's shape is not necessarily square. The local  £(;, j) = m, (i, j) + D (i, J) _.m?(” 7) . ()
mean, i.e., the low-frequency component, of a pielj) can o2(1, J)

be computed as If we treatz(¢, j) as a random variableyn.(i, 7) will be its

1 itn  jtn mean ands, (¢, 7) its standard deviation. Equation (6) then
(i, §) = oy > > x(k, 1) (1) indicates that the LSD of the output image is normalized, in
(2n +1) kmi—n I=j—n other words f(, ) will have a standard deviation @ for all
1 andj. This is an interesting observation. The CGT algorithm
and the local variance as in (4) can also be rewritten in a similar form
- 1 & & - - - - [2(E 5) = ma(i, )
0—3:(17 INE m k;n l;ﬂ[x(kv 1) —ma(i, ‘7)]2- 2) f(i, §) = ma(i, §) + Coa(t, J)|: oa(i, §) :| (7)

We can generalize (6) and (7) resulting in a new class of ACE

The termo,. (4, j) is the LSD. Letf (i, j) denote the enhancedalgorithms described as follows:

value ofz(i, j). The ACE algorithm gives

i,3) = ma, )4 G el ) —mati ). @ D) =i+ s )| TEDTEED g
The functionG(¢, j) is the CG. The CG is usually greater thafo distinguish from the conventional contrast gain (CCG)
one, so that the high-frequency componettt, j)—m.(¢, j)] G(4, 5), we call K(¢, j) the modified contrast gain (MCG).
can be enhanced. Determination@fi, j) is the crucial step Like the CCG,K (¢, j) determines the output contrast. It can
in the ACE algorithm. be easily seen that, iK (i, j) < o.(i, 7), the contrast is
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the contrast in the higlr..(¢, j) region. From Fig. 1(a), we
K (i, j) can verify that the linear MCG is inadequate.Hf(¢, j) can
be a nonlinear function such that it is close (i, ) for
1 low and higho,(i, j) and larger thans,(¢, j) for median
CG e o.(%, j), the contrast enhancement problems associated with
7TTITTn, rad IPLSD conventional methods can be overcome. Apparelyi, j)
L[ -~ must be nonlinear.
- Although the MCG in (8) can be a function .of many
variables, we only focus on the situation in which it.is‘a
) function ofs,,(¢, 7). In this situation, the MCG is reduced to a
/,’ one-variable function denoted ¥ (-). From.(8), we see that
e the LSD ofz(¢, j) is (¢, j) and the LSD off(z, j), denoted
by o£(¢, j), is K(o (4, 7)). Thus,K(-) can be interpreted as
a mapping function between, (i, j) ando (i, 7), i.e.,

@
o¢(t, j) = Kl(o.(2, 7)) 11
G it #(i, §) = K(0a(i, 7)) (11)
Note thats, (4, j) can be seen as a random variable having
A a certain histogram anal;(¢, j) as another random variable
CG 77T having its transformied histogram. If we have a desired LSD
histogram, the functionkK'(-) can then be calculated. This
L= P is to say that we can view the contrast enhancement as a
°© ttrast histogram equalization (or transformation) problem. The only
difference is that the input and output are LSD’s instead of
gray values. This is the foundation for our development of
N new ACE algorithms. Using this interpretation, we can see
G Zi,j) that the IPLSD algorithm transforms the LSD histogram into
* an impulse function [positioned at; (4, j) = D] and the CGT
(b) algorithm linearly stretches the LSD histogram.

Fig. 1. lllustration of the causes of ringing artifacts and noise overenhance-
ment in conventional ACE algorithms: (& (7, j) versuso,. (i, j).and (b)
G(i, j) versuso(i, j).

IPLSD

B. A Model for the LSD Distribution

o o . The next problem is how to find the desired LSD histogram.
reduped, .IfK(Z’ 7) =0y (z, j), the contrast remiains the sameyq can always use the uniform distribution as that in histogram
and if K (2, j) > 0.(i, j), the contrast is enhanced. Note that g ajization. However, this is not appropriate since the LSD

will not be uniformly distributed for most natural images.
K(i,j)=D (9) Below, we developed a model for LSD distributions. In [20],
Hunt proposed a Gaussian image model given by
for the IPLSD algorithm and
(i, j) = m(i, j) + (i, j) (12)
K(i, j) =Cau(i, j) (10)
wherem(é, j) is a nonstationary mean process atid j) is
for the CGT algorithm. Both are linear functions @f(7, j), a stationary white Gaussian process. Using Hunt's model, we
and it is the linear functions that cause problems. We use Fidfirkt consider the distribution of the variance estimate. Here,
to illustrate‘this. In Fig. 1, we assume that(¢, j) has been we assume that:(é, j) is deterministic and slowly varying.
normalized (divided by a maximum value). Fig. 1(a) giveAs a consequencen(i, j) can be accurately estimated and
K(i, ) versuso,(i, j) for the original contrast, the CGT ignored in the estimate of the variance. Le} be the true
algorithm, and the IPLSD algorithm; Fig. 1(b) givé, j) variance ofr(i, j) and¢ [instead ofo2(4, 5) for simplicity]
versuso, (i, 7). As we mentioned in Section |, details ofterbe the variance calculated from thé + 1 samples of-(z, 5)
correspond to regions with median(¢, j). Thus, if a constant in the local window. From mathematical statistics [22], we
gain for the CGT algorithm is adequate for detail regions, iind that
will be too large for other regions with large, (7, j) (marked
A in Fig. 1) and this causes the ringing artifacts. By contrast, M¢ ~ X2(M) (13)
if the gain function in the IPLSD algorithm is adequate for o8 x
detail regions, it will be too large for regions with small
o, (i, j) (markedB in Fig. 1), in which noise overenhance-where x?(M) is the chi-square distribution with/ degrees
ment takes place. Also note that the IPLSD algorithm reducesfreedom. For a largés, x?(M) will approach a Gaussian
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(b)

(© (d)
Fig. 2. (a)-(d) Four of the eight test images.

distribution with meanM and variance2 M (15) by much. Thus, one reasonable extension for (15) can be
M¢ 1 —((—M)?/4M — gel¢—Iv/8
oWy —— 14 p(¢) = ge ' (16)
P Vb 4

wherep(-) denotes the probability density function. Equatior‘%vhere o f, andy are distribution para_lmeters aylis a
N normalized constant. Let = /¢, theno is the LSD. From
(14) implies that

(16), the LSD distribution is obtained as follows:

PO = o (Cod)? /), (15)

B 203\/7 /M

Although Hunt's Gaussian model is simple, it may not be One may ask “how good is the LSD model in (17)?”
able to model realistic images well. Image signals may Bie have performed some experiments to evaluate this. We
nonstationary in many ways [23] and it is difficult to find thechose eight typical images used in general and medical image
true LSD distributions. However, note thatis obtained by processing (Fig. 2). We first computed the LSD histograms of
averagingM + 1 random variables. I/ is large enough, the these images. Then, for each image, we used the least-squares
shape of the LSD distribution should not deviate from that iflLS) method to fit the LSD histograms. The LS method solves

pla) = goe17" 1778, (17)
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@) (h)
Fig. 2 (Continued.) (e)—(h) Four of the eight test images.

the following optimization problem and they were listed in Table I. The corresponding LSD
distributions modeled by (17) and the LSD histograms are
e = Min /[p(o’) — h(0))? do (18) shown in Fig. 3. From the Table I, we find that the modeling

a, 8,y

errorse’s are on the order of 1. It seems that our modeling

where p(c) is the LSD model in (17) and(c) is the LSD has sufficiently good results in spite of the image contents. We
histogram_ Assume that the LSD has been quantizedqin_td have also tried different window sizes ranging fronx 3 to

levels. Rewriting the problem in discrete type, we have ~ 101x 101 for the test image (d) and found little influence
on modeling error. We consider this an important finding

o . 12 since it will be difficult to find a simple model for the gray-
= aMénwz_:O [p(a(‘])) B h(a(‘]))] ) (19) scale histogram. From empirical results, we finally came to a

T conclusion that, our LSD model in (17) is applicable to many
Using (19), we found out the parameters of LSD distributionsatural images.

m
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Fig. 3. The LSD histograms of the eight test images in Fig. 2 and their LS-fitted distributions.

It is relevant to note here that the parameters of the LSbe LSD distribution will spread. This result can be explained
distribution for a given image is strongly dependent on thes follows. When we calculate the LSD, we implicitly assume
window size. An experiment for the test image (d) is showthat pixels inside the window are stationary. However, this
in Fig. 4. As we can see the larger the window size, the widassumption is not valid for realistic images. In addition, there
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TABLE |

PARAMETERS OF THE LS-FHTTED DISTRIBUTIONS;
INITIAL VALUES ARE THOSE INSIDE PARENTHESES

Test images Image (a) Image (b) Image {c) Image (d)
Image size 512x 512 512 x 512 512x 512 911x 911
Window size 11 x 11 11 x 11 11 x 11 21 x 21
o 0.1852 (0.2) | 0.1720 (0.5) | 0.4336 (0.5) | 0.5764 (0.5)
3 0.4714 (2.0) | 0.4653 (5.0) | 3.0213 (2.0) | 3.7619 (0.5)
~ 10.1919 (10) | 5.2858 (10) | 30.3718 (20) | 5.7918 (5)
g 0.4353 0.3532 0.0441 0.1045
e 0.0012 0.0010 0.0012 0.0009
Test images Image (e) Image (T) Image (g) Image (h)
Image size 950 x 700 315 x 512 390x 390 433 x 488
Window size 21 x 21 11 x 11 11 x 11 11 x 11
« 0.5218 (0.5) | 0.1930 (0.2) | 0.2884 (0.2) | 0.6840 {0.5)
B 34936 (5.0) | 14203 (0.2) | 0.9608 (0.2) | 5.6614 (5.0)
7 11.5390 (10) | 2.5856 (2) | 1.0000 (2) | 20.0684 (5)
g 0.0771 1.0204 0.1800 0.0797
e 0.0007 0.0016 0.0006 0.0042

|\

oal| |

histogram
o
%
T

— Window size=5
— — Window size=11
—  Window size=21
—+ Window size=51
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Although we can perform extensive subjective evaluations to
determine the best transformation function, this will be time-
consuming. Here, we propose a simple solution. We use the
distribution function described in (17) as the desired LSD
distribution. There are at least two reasons for this approach.
From experiments, we found that the LSD’s of natural images,
regardless if the contrast is good or poor, can be modeled
well by (17). Thus, if we use (17) as the transformed LSD
distribution, the enhanced image may be seen as the resulit of
imaging a natural scene under conditions of good lighting. It
is our hope that the enhanced image will not only be -good for
diagnosis, but also look natural. Our formulationis similar
to the conventional histogram transformation.. The problem
in the conventional histogram transformation is that there is
no suitable histogram model to guide the transformation. The
histogram of an image can have an arbitrary shape. It will be
difficult to construct a simple' distribution that can model the
histogram adequately. In the following section, we outline a
method that performs the proposed transformation easily.

IV. CoONTRAST ENHANCEMENT BASED ON
THE LSD HISTOGRAM TRANSFORMATION

In the preceding section, we established a model describing
the image LSD distribution, and showed how to use the LS
method to find appropriate parameters. Contrast enhancement
can be achieved using LSD histogram transformation. In other
words, we want the LSD histogram to have a different set,of
3, and~ such that the transformed LSD has a larger dynamic
range. Contrast gain can then be obtained from the mapping
relationship between LSD’s before and after transformation.

A. LSD Transformation
Let h,(o,) be the image LSD histogram before transfor-

Fig. 4. The LS-fitted LSD distributions of test infage Fig. 2(d) in Fig. 2 fohation andi; (o) the LSD distribution after transformation.

varying window sizes.

is a strong correlation between the pixels in a neighborhood.
Thus, the computed LSD value will increase as the window
size is increased. With this understanding, one may wonder

As mentioned previouslyy; = K(o,) andK(-) is the MCG
function. From the probability theory, we have

doy

e (20)

hy(of) = hw(aw)|o$=K*1(of) :

how to determine the window size. There are two steps we cgfhce K() is a monotonic function, and, and o, are

follow. First, we have to define the details. This is importarﬁonnegativedam/do—f is a positive value. The absolute value

since for different purposes, the definition of details mayyn in (20) can be ignored. Integrating both sides, the equation
be different. As we mentioned in Section |, we seek detailg, pe represented as

corresponding to regions with median LSD’s. Thus, the second

step is to choose a window size that can produce median LSD
values for the interested details. Apparently, this choice is

/ hilog) doy = / halos) do. (21)

dependent on the detail pattern as well as the image resolution.

For the same image, if the resolution is increased, the windévsume that the desired parameters in (17) have been deter-

size should also be increased.
Using our model, a low-contrast image indicates only thaistogram for the output image as the model in (17), we have

the LSD has a small dynamic range. Thus, by transforming the

LSD to another variable having a large dynamic range, contrast

mined, say,«s, 3¢, and ;. Now, approximating the LSD

hy(og) = grogeloi=ul" /o, (22)

enhancement is achieved. The problem is how do we perform

the transformation. Note that the transformed LSD distributidret the LSD be quantized inte: + 1 levels and denote the
can have any shape. There are no theoretical results showgogntized LSD before and after transformationsaék) and
that one particular transformation will be better than another;(k), & = 0, 1, -- -, m, respectively. Rewriting (21) in its
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If the LSD o,(¢, j) is at the(k + 1)th level, i.e.,o.(k), the
Initials MCG in (8) is theno (k). This completes the derivation of
AG,; =107, 6,=0 our ACE algorithm.
k=0, H(-1)=0,X=0

v
H(k)= H(k ~1)+ b (c (k)

k=k+1 B. Determination of Parameters

The final problem is how to choose appropriate parameters
v for (17) in order to perform the LSD transformation. Since
there are three parametess 3, and~, direct trial-and-error
requires a lot of work. Here, we developed. a simple method
v to overcome this problem. Our idea is t0 modify the gain
function in the CGT algorithm using the proposed-LSD model.
Consider the CGT algorithm described-by = Go, where

Gf:Gf+Ao'f

2

— o~y ;17 :’fo
Y =X+gs0 e Ao

4 G is a constant. Then
= Y>> H(k) = do,
~I> A Do) =) rmcri |
e 7
/ =goG Lo peTIC TR B gt
Joptk=x — grarcod-TP= /8
' =grage 17 ’ (25)
; .
where g; = g,G7% and
<; k=m ;>N° . ,
~— Bp =625, y; =GP (26)
" bone ) Thus, the @G T algorithm simultaneously increasesd3. As

%,

S mentioned previously, the CGT algorithm suffers the ringing
effect. To eliminate this problem, CG in the high LSD region
(markedA in Fig. 1) must be reduced. This can be achieved by
increasingu. It can be seen that controls the characteristics
discrete form, we have of the distribution tail. The larger ther, the shorter the
distribution tail and the smaller the CG in the high LSD region.
Parametery has a large influence on the mode position of the

Fig. 5. The flowchart for computing the LSD transformation.

oy (k) k
/ ' go e 17T 8 g = 1 th(%(]’)), LSD distribution. Ify is increased, the mode position moves
a;(0) N 5=0 farther from the origin. Then, the MCG will have a larger value
k=0,1, -, m (23) inthe low LSD regions. Note that increasingwill magnify

the MCG in the low LSD region and this is not desirable.
here N is th | b toixels in the | Wi Thus,~ should be decreased to compensate for this effect.
where IV is the total number qigoiAge In the image. We Using the procedure outlined above, we can adjust the three

assumev ;(0) = 0. The tran_sformanon functiod(-), which parameters to obtain the desired transformation. However, it
represents the transformalion, from(k) to o(k), can then is found that directly adjusting, 3, and~ is not efficient.

be obtained by solving (23). Note that the unknown in (2 sing the result in (26), we now propose another way to do
is of(k), £k = 0,1, ---, m. To obtain accurate solutionsthe job. Let '

for o;(k) is complicaied and not necessary. Here, we use a
;imple method depicted by the flowchart ir_1 Fig. 5. Here, the o, = Aa,, Br = E* 3, vy =Fy,.  (27)
incrementAs ; was set at 10°. We can obtain more accurate
results by using a smallef\s; value at the cost of higher Instead ofa, 3, and~y, we useA, E, and ' to obtain the
computing time. desired transformation. Experiments show that this approach

We.-can also use the other transformation method, whigheatly facilitates the parameter determination. From the dis-
replaces the empirical histogram with the LS-fitted distribigussion in the last paragraph, it is obvious that- 1, and
tion. Let the LS-fitted parameters in (17) be, 3., and~,. £ > F. We now summarize the procedure for parameter
Equation (23) then becomes determination as follows.

1) Choose a proper constaht

oy (k) s 2) ChooseA4 such that the MCG can suppress the ringing
/ ggo e |71 /B do artifacts in the high LSD region.
71(0) 3) ChooseF' such that the high contrast region can be
_ /ox(k) aoelTE = e gy k=01, m. moved to the desired place.
o5 (0) To obtain the best results, this procedure can be carried out

(24) repeatedly. From our experience, we found that typical values
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We next provide examples to show the influences of paragfeeper the MCG function. This is not surprising sintés
etersA, E, andF on the.MCG function. This will be helpful small in this case. The transformed LSD distributions for two
for understanding the proposed procedure. bet = 0.6, different E’s are shown in Fig. 6, in which they are labeled
B, = 5.5, andv, = (3.4)2 In Fig. 7, we plot the MCG's (a) and (d). We find that the one with the largérooks like
for varying 4 (£ = 10 and ' = 3). As we expect, the larger @ linear stretch of the one with the smaller
the A, the smaller the MCG in the high LSD region. We also Once the parameters are determined, we can perform
plot the transformed LSD distributions in Fig. 6. From thée LSD transformation to enhance the image. We can
distributions labeled by (a) and (b) in the figure, we can s&®W summarize the whole procedure for implementing our
that.A does control the tail characteristics. The MCG functiofcheme.
for varying F' is shown in Fig.8 4 = 1 and F = 10). 1) Calculate the LSD histogram of the image and use the
The transformed LSD distributions for two differefts are LS method to find the corresponding parameters for (17).
shown in Fig. 6, in which they are labeled as (a) and (c). The2) Find the desired parameter$, £, and F' using the
LSD distribution shapes look alike, but the mode positions  procedure outlined above.
are clearly different. In Fig. 9, we plot the MCG function for 3) Perform the LSD transformation in (23) using (27) and
varying £ (A = 1 and F' = 1). As we can see, the role of find the mapping function.
E is very similar to the constant gain in the CGT algorithm. 4) Use the mapping function to carry out the enhancement
The MCG functions are almost linear and the largerhé¢he described in (8).
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Fig. 10. The CGK(i, j): (a) the CGT algorithm@ = 1), (b) the CGT . o ) .
algorithm €' = 4), (c) the IPLSD algorithm = 0.8), and (d) the proposed Fig- 11. The CGG(i, j): (a) the CGT algorithm{’ = 4), (b) the clipped
algorithm. IPLSD algorithm, and (c) the proposed algorithm.

Our method is based on the LSD histogram transformatiomo avoid large noise amplification, the IPLSD gain was clipped
In other words, images with the same LSD histogram majt a maximumG(i; ) of 5.5 and a minimumG(i, j) of
share the same mapping functions. If the window size and. The. corresponding CCG functions of the test algorithms
image resolution remain the same, we can expect that L3R also depicted in Fig. 11. It is apparent that the proposed
histograms will be similar for the same types of imagesigorithm has higG(i, ) in the detail region (median LSD's)
taken from the same imaging system. Thus, we require oRf}iq has smalZ(s, j) in the smooth and edge regions (small
one common nonlinear LSD mapping function. To reducg,q large LSD's).

computatiqns, the MCG function can be tabulated i.n advanCerpe enhanced images are shown in Fig. 12. A rectangle
of processing. Then, the computational complexity of gt gray value of 50 was inserted into the original image
proposed algorithm is identical to the conventional IPLSIR) evaluate the ringing effect of the test algorithms. From
algorithm. Note that both algorithms have to compute I.ocﬁlig. 12, we find that the CGT algorithm has a severe ringing
means as well as LSD's. In contrast, the @1 algor'th(%ﬁ_tifact. This is due to the high constant CG in the edge
needs only to compute the local means.7Thus, the C gion. The ringing effect does not show up in the IPLSD

algorithm requires fewer computations. To further reduce t%%d the proposed algorithm. Note that the IPLSD algorithm

ional lexity of th d algorith f )
computational complexity of the proposéd algorithm, some arsetnders heavy enhancement of normal vascular details. The

algorithms for local mean and LSD-/computations [17] can b€ . L .
applied. overemphasized vascular details in the lungs may look like
calcification and affect the diagnosis of lung lesions [16]. In

V. SIMULATIONS our algorithm, the vascular structure is properly handled and

The chest X-ray image in Fig. 2(d) was used to performe enhanced result does not cause a disturbance.
simulations. The image size was 92 D11 and the gray-scale A simple quantitative analysis was used to evaluate en-
consisted of 256 levels. The window size for the local medrncement quality [25], [26]. The image was first segmented
and LSD calculation was chosen as 221. The details to into three regions: smooth, detail, and edge regions. The
be enhanced. were lung lesions and indistinct ribbed patteragerage local variances (ALV’s) in the three regions were then
Here we assumed that global contrast was acceptable aattulated as quality measures: the ALV in the smooth region
focused @nly on the enhancement of the local contrast. TRELVS), the ALV in the detail region (ALVD), and the ALV
MCG (4. 4) used for the simulations are shown in Fig. 10n the edge region (ALVE). The ALV in a certain region is
Since the cumulative value of the LSD histogram was almoséfined as follows:
one when the LSD= 30 [as shown in Fig. 3(d)], the LSD was

normalized with respect to the valug of 30. Pixels with LSD’S ALV = ! Z o2 (i, §) (28)
beyond 30 had their CG’s simply clipped. The four MCG’s in T eRr
Fig. 10 correspond to the following algorithms.
a) The CGT algorithm in (4) witiC' = 1. where R is the region,V, is the number of pixels iz, and
b) The CGT algorithm in (4) withC' = 4. o2(i, j) is the local variance defined in (2). It is apparent
c) The IPLSD algorithm in (5) withD = 0.8. that a good enhancement algorithm should give reasonably

d) The proposed algorithm with parameters 4f = 4, high ALVD and low ALVS and ALVE. In our analysis, image
E =25 and F = 3. segmentation was performed by LSD thresholding; each pixel
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(© (d)
Fig. 12. Results of contrast enhancement for testimage Fig. 2(d): (a) original, (b) the CGT algorithm, (c) the IPLSD algorithm, and (d) the proposed algorithm.

was classified according to the following rules:

LSD < 7} = Smooth Region
Ty < LSD < T5 — Detail Region
15< LSD — Edge Region (29)

DR RTT VIR

whereT7 and 1y are two parameters that can be chosen to:

meet different requirements. In our case, welgt= 3 and R &
T, = 12. Using this simple segmentation scheme, we found i;
i

that pixels of 28.12% are in the smooth region, 66.67% in the
detail region, and 5.21% in the edge region. These regions arg;

shown in Fig. 13. Since we assumed that the vascular structur%x\:\%\\\\\y
is not critical, the smooth region was chosen to include someg ey

Mg

in Table Il. It is seen that the ALVE for the CGT algorithm is_ _ _ o _
significantly higher than others. This indicates severe ringirﬂ@%ﬁgra?fggfgft::dOgdtgejt(\;vnr‘ﬁgf r(e‘gi in Fig. 2: smooth (dark) region,
artifacts. The ALVD for the IPLSD algorithm is close to that

for the proposed algorithms, however, the ALVS for the IPLSEhe IPLSD algorithm. Note that the performance of these three
algorithm is much larger than that for the proposed algorithrmeasures strongly depend on the segmentation scheme and
This explains why the vascular structure is overenhancedparamete(Z;, 7») setting. Although our segmentation scheme
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(b)

(d)

Fig. 14. Results of contrast enhancement for test image (d) in Fig. 2: (a) original image with 2% uniform noise, (b) the CGT algorithm, (c) the IPLSD
algorithm, and (d) the proposed algorithm.

TABLE I
COMPARISON OF THREE ALV M EASURES FOR THETEST ALGORITHMS

Measures || Original Image | CG Algorithm | IPLSD Algorithm | Proposed Algorithm

ALVS 5.0776 29.0891 48.3439 19.2759
ATVD 38.5072 98.1403 135.9114 127.0441
ALVE 316.6101 920.2396 506.6209 508.8403

is simple, these measures still provide useful information fawvisible before enhancement. However, it becomes apparent
evaluation of the contrast enhancement. after enhancement. It is clear that the IPLSD algorithm is
To further test the noise enhancement property, we randomtpre likely to enhance noise. The proposed algorithm does
added a 2% uniform noise with values between zero and sigt enhance noise in the small and high LSD regions. From
to the image. Note that the early calcification lesions usualligese results, we can conclude that the nonlinear CG is more
cause white spots in X-ray images. To show the averse effeffiective and can properly handle the ringing artifacts and
of noise overenhancement, we only considered noise withise overenhancement problem.
positive values. For better visibility, each noise sample coveredWe have shown that the proposed algorithm is useful
four contiguous pixels. The noisy and enhanced images a@meprocessing chest X-ray images. To test the effectiveness
shown in Fig. 14. From this figure, we find that noise is almosf the proposed algorithm on other types of images, we
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Fig. 15.
thorax CT, (b) cerebral angiography, and (c) mammography.

also conducted simulations using the native thorax computed
tomography (CT), cerebral angiography, and mammography

images shown in Fig. 2(f)—(h). The parametets £, F') used

for the enhancement were (5, 25, 3), (5, 25, 3), and (3.5,

Results of contrast enhancement for test images Fig. 2(f)—(h): (a)

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 17, NO. 4, AUGUST 1998

3), respectively. The enhanced images are shown in Fig. 15.
From these images, we found that the details were efficiently
enhanced.

VI. CONCLUSIONS

The ACE algorithm is a well-known technique for medical
image processing. Conventional approaches suffer{from noise
overenhancement and ringing artifacts. In this paper, we pre-
sented a new ACE algorithm to overcome these problems. We
first proposed a mathematical model for the LSD distribution.
Based on this model, we formulated ACE as an LSD histogram
transformation problem. There are three parameters in our
model which could be chosen to meet diiferent requirements.
Finally, detailed simulations were carried out using a chest
X-ray image, showing that our method adequately enhances
details and produces little noise overenhancement and few
ringing artifacts. Other types of medical images are also tried
and effectively enhanced results were also observed. Note that
we can separate aniimage into several regions and use different
gain functions for different regions. This may produce even
better results. Research in this area is continuing.
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