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Bearing-Only Maneuvering Mobile Tracking With
Nonlinear Filtering Algorithms in

Wireless Sensor Networks
Dah-Chung Chang, Student Member, IEEE, and Meng-Wei Fang

Abstract—Mobile node localization is important to offer wire-
less services in vehicular communication applications. Some typi-
cal methods realize the mobile node tracking through data fusion
from time of arrival (TOA) and received signal strength (RSS)
measurements provided by sensor nodes or base stations (BSs).
Although the TOA/RSS method is not expensive under a concern
of cost, it is very sensitive to multipath signal propagation effects.
As the technology of angle of arrival (AOA) antennas is showing a
rapid progress, we turn to consider AOA estimation. In this paper,
the nonlinear extended Kalman filter (EKF) and the particle filter
(PF) along with a three-model interacting multiple model (IMM)
algorithm are utilized and compared for maneuvering mobile
station (MS) tracking with bearing-only measurements. A coor-
dinated turn model is used to improve the tracking performance
since the MS frequently turns in the streets. We also propose an
efficient method for resampling particles to alleviate the degen-
eracy effect of particle propagation in the interacting multiple
model particle filter (IMMPF) algorithm. Moreover, a BS sensor
selection scheme is also exploited for the long-haul MS tracking
case which often changes BSs in a wireless vehicular sensor net-
work. Numerical simulations show that the three-model IMMPF
algorithm outperforms the interacting multiple model extended
Kalman filter algorithm and achieves a root-mean-square tracking
performance which is quite close to the posterior Cramer–Rao
lower bound.

Index Terms—Angle of arrival (AOA), interacting multiple
model (IMM), Kalman filtering, mobile tracking, particle filtering,
posterior Cramer–Rao lower bound (CRLB), resampling.

I. INTRODUCTION

MOBILE POSITIONING is a rapidly growing and crucial
research topic in advanced vehicular technology [1]–[4].

Knowing the accurate location of the mobile station (MS) can
provide diverse applications in wireless communication net-
works, such as the localization of metropolitan transportation
vehicles, emergency care, public traffic control, etc. The mobile
location can be measured by widely distributed base stations
(BSs). In fact, those BSs can be viewed as the sensors in a wire-
less sensor network (WSN). The measured MS information,
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including received signal strength (RSS) and arriving signal
angle, can be transmitted to the data fusion center for signal
postprocessing. Hence, some typical methods used to estimate
the mobile position may utilize the angle of arrival (AOA) [5],
time difference of arrival (TDOA), time of arrival (TOA), RSS
[3], [6], GPS, etc.

Mobile location estimation mainly determines the location
and velocity of an MS based on the measured signals from its
neighboring BSs. TOA [4] is a technique to measure the round
trip time of signal transmission from the BS to the MS and back
to the BS, and the arrival time of the radio signals is usually
measured from different wireless BSs. The TDOA technique
measures the time difference between the radio signals, and
the distance differences of the MS to at least three BSs are
measured. The AOA technique is only conducted within the BS
by observing the arriving angle of the signals coming from the
MS. Each BS determines the direction of the received signal
angle. The MS location is derived by the intersection of at least
two lines of antenna arrays. To eliminate unsatisfactory effect,
more than two BSs are usually utilized. The AOA method has
the advantage over TOA that the BS does not need time syn-
chronization and is robust against multipath signal propagation
effects. However, the accuracy of mobile location estimation is
still a very difficult problem and continues attracting a lot of
works. Moreover, the data fusion techniques are also employed
to improve accuracy.

Although some recent research can be found in developing
mixed localization methods such as TOA/AOA [7], TDOA/
AOA [8], AOA/RSS [9], or TOA/RSS [10], in this paper, owing
to the merit of being immune to multipath signal propagation
effects, we focus on the AOA method using an advanced
nonlinear filtering algorithm for tracking a maneuvering MS.
It is well known that the Kalman filter has been widely used
for parameter estimation in a state-space model since it is the
optimally recursive linear filter in the Gaussian noise environ-
ment. Nevertheless, with the AOA method, the mobile location
in the Cartesian coordinate is inherently a nonlinear relation-
ship with the arriving angle measurements. Then, a nonlinear
modification to the linear Kalman filter, the extended Kalman
filter (EKF) [11], can be used. From the point of view of prac-
tical model on states, the EKF does not guarantee an optimal
solution in a complicated situation of nonlinearity and non-
Gaussian distribution. The particle filter (PF) is an alternative
with competitive performance compared to the EKF [12], [13].
However, in a practical mobile localization problem, the MS
cannot be described by a uniformly kinematic equation in all
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motion situations. An effective multiple model method, called
interacting multiple model (IMM) algorithm [14], is suited to
improve the tracking performance, which can mix appropriate
dynamic models based on a Bayesian probability metric.

In previous works, the combination of the IMM algorithm
and EKF (or PF) for solving the TOA/RSS problem can be
found in the literature [3]. However, its dynamic model for a
maneuvering MS was quite simple, where two dynamic models,
constant velocity motion and acceleration motion, were only
considered. An MS frequently makes a turn in the street. As we
take into account this situation, we add the third dynamic model
describing the turning motion in this paper. With bearing-
only BS data, we derive the nonlinear measurement equation
and the turning motion dynamic equation for the use of EKF
and PF. In numerical simulation, the performance of using
the new dynamic model along with the interacting multiple
model particle filter (IMMPF) and interacting multiple model
extended Kalman filter (IMMEKF) algorithms is compared to
show its effectiveness for the application of AOA maneuvering
MS tracking. In this paper, only the line-of-sight situation
for AOA MS localization is considered. The non-line-of-sight
situation is more complicated [15], [16] and out of this scope,
which will be addressed in another work.

The rest of this paper is organized as follows. Section II
describes the system model in our framework and establishes
the AOA measurement model and the state equations to be used
in this paper. In Section III, we explain how the EKF and PF
algorithms work with the proposed dynamic and measurement
models in the IMM algorithm. The posterior Cramer–Rao
lower bound (CRLB) is also analyzed for providing theoretical
performance comparison. Moreover, a BS selection scheme is
introduced for the long-haul tracking application. The setup
of numerical simulations and the tracking performance are
evaluated in Section IV. A brief conclusion about the proposed
work is deferred in Section V.

II. PROBLEM FORMULATION

The mobile localization system to be explored in this paper
is depicted in Fig. 1, where four BSs, numbered by BS1, BS2,
BS3, and BS4, are assumed to be located at four corners,
respectively, and the corresponding four arriving signal angles
θ1(k), θ2(k), θ3(k), and θ4(k) at time k can be measured
for the MS target. Suppose that a Cartesian coordinate with
the horizontal axis x and the vertical axis y is built in this
configuration and the target position is at (x(k), y(k)).

A. System Model

Let X(k) denote the state vector, Z(k) denote the measure-
ment vector, f(·) denote the state transition function, and h(·)
denote the measurement function. The state-space system mod-
el can be described by the following two equations [17], [18]:

X(k + 1) = f (X(k), t(k),m(k)) +w (k,m(k)) (1)

Z(k) =h (X(k), t(k),m(k)) + v(k) (2)

where t(k) denotes the sampling time (here, we simply
let t(k) = Δt), m(k) denotes the different dynamic model,

Fig. 1. Configuration of mobile localization and BS location.

w(k,m(k)) is the process noise vector, and v(k) is the mea-
surement noise vector. For simplicity, w(k,m(k)) and v(k)
are modeled as two uncorrelated white Gaussian noise vectors,
where w(k,m(k)) ∼ N (0, Q̃m(k)) with a process noise co-

variance Q̃m(k) and v(k) ∼ N (0,R) with a diagonal covari-
ance matrix R.

B. State Dynamic Model

In this paper, the full state vector is defined as

X(k) = [x(k), ẋ(k), ẍ(k), y(k), ẏ(k), ÿ(k)]T (3)

where x(k), ẋ(k), and ẍ(k) represent the target position,
velocity, and acceleration, respectively, in the horizontal axis
and y(k), ẏ(k), and ÿ(k) are the same physical elements in
the vertical axis. For simplicity without losing generality, we
will only write out the horizontal dynamic expression to be
considered in this paper. The dynamic expression defined in the
vertical axis can be applied in a similar manner as well.

For the problem of interest in the tracking of mobile motion
in the street, we classify the dynamic model into three dif-
ferent equations: constant velocity (CV), constant acceleration
(CA), and constant turning (CT). Denote that m(k) ∈ {1, 2, 3},
where m(k) = 1 represents the CV model, m(k) = 2 is the CA
model, and m(k) = 3 is the CT model.

CV Model (m(k) = 1). In this model, the elements ẍ(k) and
ÿ(k) are neglected because no acceleration is supposed, i.e., we
can simplify that X′(k) = [x(k), ẋ(k)]T as only the horizontal
model is written out for simplicity. By removing the estimate
of acceleration, the process noise due to acceleration estimation
will never be involved in order to improve estimation accuracy.
We express the CV dynamic model as

f (X′(k),Δt, 1) =

[
1 Δt
0 1

]
X′(k) (4)

Q̃1 = I2 ⊗
[

(Δt)4

4
(Δt)3

2
(Δt)3

2 (Δt)2

]
σ2
1 (5)
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where Im denotes the m×m identity matrix, ⊗ is the
Kronecker product, and σ2

1 is a parameter to control the process
noise variance of the CV model.

CA Model (m(k) = 2). In this model, all of the elements
x(k), ẋ(k), and ẍ(k) are used in estimation. Let X′′(k) =
[x(k), ẋ(k), ẍ(k)]T , and the CA dynamic model is ex-
pressed as

f (X′′(k),Δt, 2) =

⎡⎣ 1 Δt (Δt)2

2
0 1 Δt
0 0 1

⎤⎦X′′(k) (6)

Q̃2 = I3 ⊗

⎡⎢⎣
(Δt)4

4
(Δt)3

2
(Δt)2

2
(Δt)3

2 (Δt)2 Δt
(Δt)2

2 Δt 1

⎤⎥⎦σ2
2 (7)

where σ2
2 is a parameter to control the process noise variance of

the CA model.
CT Model (m(k) = 3). In [19] and [20], the kinematics of a

turn performed in a horizontal plane with known turning rate
ω(k) was proposed. We can rewrite the kinematic equations in
this paper as

f (X(k),Δt, 3)

=

⎡⎢⎢⎣
x(k) + Δt× ẋ(k)− 1

2 (Δt)2ẏ(k)ω(k)
y(k) + Δt× ẏ(k) + 1

2 (Δt)2ẋ(k)ω(k)(
1− 1

2 (Δt)2ω2(k)
)
× ẋ(k)−Δt× ẏ(k)ω(k)(

1− 1
2 (Δt)2ω2(k)

)
× ẏ(k) + Δt× ẋ(k)ω(k)

⎤⎥⎥⎦ . (8)

The turning rate highly depends on the traffic status in mobile
tracking applications, and preassigning some typical value may
be not practical. Moreover, the clockwise or anticlockwise
turn is also affected by the value to be positive or negative.
Hence, we can view ω(k) as a random variable to be estimated
and augment the state vector as Xa(k) = [x(k), ẋ(k), y(k),
ẏ(k), ω(k)]T in this model. Then, we can rewrite the dynamic
model for m(k) = 3 as

f (Xa(k),Δt, 3)

=

⎡⎢⎢⎢⎣
x(k) + Δt× ẋ(k)− 1

2 (Δt)2ẏ(k)ω(k)
y(k) + Δt× ẏ(k) + 1

2 (Δt)2ẋ(k)ω(k)(
1− 1

2 (Δt)2ω2(k)
)
× ẋ(k)−Δt× ẏ(k)ω(k)(

1− 1
2 (Δt)2ω2(k)

)
× ẏ(k) + Δt× ẋ(k)ω(k)
ω(k)

⎤⎥⎥⎥⎦ (9)

Q̃3 =

[
Q̃′

3 0
0 σ2

ω

]
(10)

where σ2
w is the modeling error variance of ω(k)

Q̃′
3 = I2 ⊗

[
(Δt)4

4
(Δt)3

2
(Δt)3

2 (Δt)2

]
σ2
3 (11)

and σ2
3 is a parameter to control the process noise variance

of the CT model. Note that the noise variance matrices Q̃1,
Q̃2, and Q̃′

3 used in (5), (7), and (11), respectively, are the
discretized forms obtained from their continuous dynamic mod-
els which are discussed in detail in [21], and therefore, the
discussion is omitted in this paper.

Measurement Model. The available measurement at time k is
the angle from the BS platform to the MS target as depicted in
Fig. 1. The angle measurement at BS#n is defined as

θn(k) = arctan

(
y(k)− yn
x(k)− xn

)
, n = 1, 2, 3, 4 (12)

where (xn, yn) is the location of BS#n in the Cartesian co-
ordinate. Note that it is not necessary to define the angles
as the same reference (e.g., clockwise positive) because we
can easily modify it by adding or subtracting multiples of π
from the same referenced angle to fit the definition in (12).
The minimum number of BSs able to track the target is two.
However, using more BSs can help the resulted accuracy. In our
system, the data from four BSs are collected at the fusion center
and modeled in the measurement equation. Let Z(k) denote the
measurement vector and Z(k) = [θ1(k), θ2(k), θ3(k), θ4(k)]

T .
The measurement equation can be written by

Z(k) =

[
arctan

(
y(k)− y1
x(k)− x1

)
, · · · , arctan

(
y(k)− y4
x(k)− x4

)]T
+ v(k) (13)

where v(k) is the measurement noise vector with covariance
matrix R = σ2

θI4 and σ2
θ is the angle measurement noise

variance.

III. NONLINEAR FILTERING METHODS FOR

MANEUVERING MOBILE TRACKING

In our formulation, the mobile motion is described by three
possible models, CV, CA, and CT. In this complicated and
nonlinear system, it is very difficult to estimate required pa-
rameters, such as mobile position and velocity, only by a sin-
gle model. In practical wireless propagation environments, we
cannot exactly switch the state-space filtering algorithm among
these models. The combination of IMM and the filtering algo-
rithm can provide parallel filtering results and mix the outputs
based on their mixing probabilities. However, before employing
the IMM algorithm, the transition probabilities defined in the
Markovian transition matrix P need to be given. As depicted in
Fig. 2, pij denotes the mode transition probability from model
i to model j where 1 ≤ i, j ≤ 3 in this system, and P can be
written by

P =

⎡⎣ p11 p12 p13
p21 p22 p23
p31 p32 p33

⎤⎦ . (14)

The model transition matrix is usually determined by an evalua-
tion through traffic analysis about the MS in the practical situa-
tion. From an intuitive concept, the MS may remain the present
mode in a long time such that pii can be set close to unity, for
example, 0.96, while pij , i �= j, denotes the transition between
two different modes such that the value can be close to zero, for
example, 0.02. For a normalized probability,

∑
j pij = 1.

In general, each cycle in the IMM algorithm consists of
four main stages as depicted in Fig. 3. First, the initial state
vector estimate X̂0j(k) and the state vector estimation error
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Fig. 2. Mode transition in IMM algorithm.

Fig. 3. Structure of the IMM algorithm.

covariance matrix P̂0j(k) are obtained by mixing the estimates
X̂j(k) and P̂j(k) of all filters at the previous index k based
on the mode probabilities μ̂j(k) under the assumption that
those filters are in effect at the current index k + 1, which
is performed in the Interaction/mixing block. Then, followed
by a regular filtering stage, the new state vector X̂j(k + 1)

and covariance matrix P̂j(k + 1) are produced in parallel from
the filters with different models. By calculating the likelihood
functions Lj(k + 1) of the measurement prediction error based
on Gaussian approximation, new mode probabilities μ̂j(k + 1)
can be updated, and the resultant estimates at the current
index, X̂(k + 1) (or P̂(k + 1)), are obtained by calculating
the mixture of X̂j(k + 1) (or P̂(k + 1)) and μ̂j(k + 1). The
mode probability plays a key role in the IMM algorithm for
mixing the states and covariance matrices that resulted from
different dynamic models. Next, we explain how to use the
three dynamic models in the IMMEKF and IMMPF algorithms.

A. IMMEKF Algorithm

We use the following four stages to describe the IMMEKF
algorithm used in this paper.

Stage 1: Interaction. Suppose that μ̂j(k) is the mode prob-
ability obtained at the previous index. The mixing probability
from mode i to mode j is calculated by

μi|j(k) =
1

cj
pijμi(k) (15)

where cj is a normalization factor such that

cj =

3∑
i=1

pijμi(k). (16)

As the estimate vector X̂j(k) and the covariance matrix
P̂j(k) are known from the previous cycle, we can compute the
initial state vector and the covariance matrix for the input of
model j in this cycle by

X̂0j(k) =

3∑
i=1

X̂i(k)μi|j(k) (17)

P̂0j(k) =

3∑
i=1

μi|j(k)
{
P̂i(k) + [X̂i(k)− X̂0j(k)][·]T

}
(18)

where [·]T denotes the pairwise same product terms for simplic-
ity in this paper, and here, for example, [·] = X̂i(k)− X̂0j(k).

Stage 2: Prediction and Filtering. Since we have three dif-
ferent dynamic models, the prediction and filtering processes
are also different for the three models. The prediction process
is directly derived by taking the expectation on both sides of
(1), and we can express the predicted state vector for model
m(k) = j as

X
j
(k + 1) = f

(
X̂0j(k),Δt, j

)
. (19)

The state vector prediction error covariance matrix for model j
becomes

P
j
(k + 1) = Fj(k)P̂0j(k)FjT (k) + Q̃j(k) (20)

where Fj(k) is the Jacobian matrix of model j and

Fj(k) =
∂f(X,Δt, j)

∂X

∣∣∣∣
X=X̂0j(k)

. (21)

From (4), (6), and (9), we have

F1(k) = I2 ⊗
[
1 Δt
0 1

]
(22)

F2(k) = I2 ⊗

⎡⎣ 1 Δt (Δt)2

2
0 1 Δt
0 0 1

⎤⎦ (23)

and F3(k) can be found as (24) shown at the bottom of the next
page.

From the prediction equations, the state vector estimate and
the state vector estimation error covariance matrix for model j
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can be updated by

X̂j(k + 1) =X
j
(k + 1) +Kj(k + 1)

×
(
Z(k)− h

(
X

j
(k + 1)

)
,Δt, j

)
(25)

P̂j(k + 1) =
(
I−Kj(k + 1)Hj(k + 1)

)
P

j
(k + 1) (26)

where Kj(k + 1) is called the Kalman gain with

Kj(k + 1)

= P
j
(k + 1)HjT (k + 1)

×
[
Hj(k + 1)P

j
(k + 1)HjT (k + 1) +R(k + 1)

]−1

(27)

Hj(k + 1)

=
∂h(X,Δt, j)

∂X

∣∣∣∣
X=X

j
(k+1)

. (28)

Note that

∂θn(k)

∂x(k)
=

− [yn − y(k)]

[xn − x(n)]2 + [yn − y(k)]2
(29)

∂θn(k)

∂y(k)
=

[xn − x(k)]

[xn − x(n)]2 + [yn − y(k)]2
(30)

∂θn(k)

∂ẋ(k)
=

∂θn(k)

∂ẏ(k)
=

∂θn(k)

∂ẍ(k)
=

∂θn(k)

∂ÿ(k)
=

∂θn(k)

∂ω(k)
= 0 (31)

then, (28) actually becomes (32) shown at the bottom of the
page.

Stage 3: Mode Probability Update. As the estimates X̂j(k +

1) and P̂j(k + 1) are obtained, the likelihood functions to be
used for mode probability update are computed based on the
Gaussian approximation of the measurement prediction error
as follows:

L̂j(k + 1) = N
(
ej(k + 1);0,Sj(k + 1)

)
(33)

where N (p;0,G) denotes a Gaussian function of vector p with
mean 0 and covariance matrix G, and

ej(k + 1) =Z(k + 1)− h
(
X

j
(k + 1),Δt, j

)
(34)

Sj(k + 1) =E
{
ej(k + 1)ej(k + 1)T

}
=Hj(k + 1)P

j
(k + 1)HjT (k + 1) +R(k + 1).

(35)

The update mode probability for model j is

μj(k + 1) =
1

c
Lj(k + 1)cj (36)

where c is a normalizing factor with

c =

3∑
j=1

Lj(k + 1)cj . (37)

Stage 4: Mixture. The resultant state vector estimate and the
estimation error covariance matrix are finally obtained as

X̂(k + 1) =

3∑
j=1

X̂j(k + 1)μj(k + 1) (38)

P̂(k + 1) =

3∑
j=1

μj(k + 1)

×
{
P̂j(k + 1)

+
[
X̂j(k + 1)− X̂(k + 1)

]
[·]T
}
. (39)

B. IMMPF Algorithm

The Kalman filtering (KF) is derived based on the assump-
tion of Gaussian distribution for involved random variables pre-
senting in linear state equations. Exempting from the Gaussian
assumption and linearity, the PF also relies on the Bayesian

F3(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 Δt 0 −(Δt)2ω̂(k)
2

−(Δt)2 ˆ̇y(k)
2

0 (Δt)2ω̂(k)
2 1 Δt (Δt)2 ˆ̇x(k)

2

0 2−(Δt)2ω̂(k)
2 0 −Δt× ω̂(k) −Δt

(
Δt× ˆ̇x(k)ω̂(k) + ˆ̇y(k)

)
0 Δt× ω̂(k) 0 2−(Δt)2ω̂(k)

2 −Δt
(
Δt× ˆ̇y(k)ω̂(k) + ˆ̇x(k)

)
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(24)

Hj(k + 1) =

⎡⎢⎢⎢⎣
−[y1−ȳj(k+1)]

[x1−x̄j(k+1)]2+[y1−ȳj(k+1)]2
[x1−x̄j(k+1)]

[x1−x̄j(k+1)]2+[y1−ȳj(k+1)]2
0 0 0 0

...
...

...
...

...
...

−[y4−ȳj(k+1)]
[x4−x̄j(k+1)]2+[y4−ȳj(k+1)]2

[x4−x̄j(k+1)]
[x4−x̄j(k+1)]2+[y4−ȳj(k+1)]2

0 0 0 0

⎤⎥⎥⎥⎦ (32)
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filtering concept for recursive state estimation. With a different
approach, PF-based algorithms are the sequential Monte Carlo
method that uses a finite and large set of particles to approxi-
mate a required probability density, which are useful for non-
Gaussian and nonlinear systems.

As shown in Fig. 3, we divide the IMMPF algorithm into the
following stages.

Stage 1: Interaction. The interaction stage is the same as
those employing (15)–(18) in the IMMEKF algorithm.

Stage 2: State Update with Importance Sampling. The basic
concept of a PF algorithm is to make the important sampling
function recursive, i.e., sequential importance sampling (SIS).
On the sequential reception of each measurement, support
points and their associated importance weights are recursively
propagated through the SIS algorithm.

Let us draw Np particles (samples) X
j
n(k), where n =

1, 2, · · · , Np, from the initial statistics X̂0j(k) and P̂0j(k))
based on the Gaussian distribution for model j by the following
scheme:

X
j
n(k) ∼ N

(
X̂0j(k), P̂0j(k)

)
. (40)

As we have particle X
j
n(k), the predicted state particle X

j
n(k +

1) and the corresponding weight W
j
n(k + 1) can be calcu-

lated by

X
j
n(k + 1) = f

(
X

j
n(k),Δt, j

)
(41)

Wj
n(k + 1)

=N
((

Z(k + 1)− h
(
X

j
n(k + 1)

)
,Δt, j

)
,

R(k + 1)
)
. (42)

Note that the weights obtained from (42) should be norma-
lized as

W
j
n(k + 1) =

Wj
n(k + 1)∑Np

n=1 W
j
n(k + 1)

. (43)

Stage 3: Mode Probability Update. Once the particle X
j
n(k +

1) and its corresponding normalized weight W
j
n(k + 1) are ob-

tained, we can evaluate the mean of the predicted measurement

vector for model j, Z
j
(k + 1), by

Z
j
(k + 1) =

Np∑
n=1

h
(
X

j
n(k + 1),Δt, j

)
. (44)

The measurement prediction error vector (residual measure-
ment vector) for model j, ejn(k + 1), and the residual covari-
ance matrix Sj(k + 1) are

ejn(k + 1) =Z(k + 1)− h
(
X

j
n(k + 1),Δt, j

)
(45)

Sj(k + 1) =

Np∑
n=1

{[
h
(
X

j
n(k + 1),Δt, j

)
− Z

j
(k+1)

]
[·]T
}

(46)

Fig. 4. Concept of particle resampling.

respectively. The likelihood function for mode probability up-
date is

Lj
n(k + 1) = N

(
ejn(k + 1);0,Sj(k + 1)

)
. (47)

Stage 4: Resampling. It is shown in the literature, only with
SIS, that only very few particles have nonzero importance
weights after some iteration. To alleviate the adverse degen-
eracy effects of the SIS algorithm, some resampling scheme
should be considered to eliminate particles with low importance
weights and increase particles with high importance weights,
with unchanged number of particles. Fig. 4 is depicted to
illustrate the concept of resampling. Particles are represented
by circles, and their weights are reflected by the corresponding
diameters. The bottom row of circles are the particles with
equal weights before resampling. As their weights at time index
k are calculated, the particles are going to be propagated to
time index k + 1. After resampling, the large particles (with
high importance weights) are replicated, and the small particles
are removed. Then, the number of new particles at time k + 1
remains the same as that at time k, and the new particles are
assigned equal weights. From the principle of resampling, we
propose a new scheme for implementing particle propagation in
the PF algorithm.

Proposed Resampling Scheme:

1) Given the normalized weight W
j
n(k + 1) of particle

X
j
n(k + 1) for n = 1, 2, · · · , Np as obtained from (41)

and (43), employ the sorting of W
j
n(k + 1) in descending

order as

W
j
(1)(k + 1) ≥ W

j
(2)(k + 1) ≥ · · · ≥ W

j
(Np)

(k + 1) (48)

and denote their corresponding particles by X
j
(1)(k + 1),

X
j
(2)(k + 1), · · · ,Xj

(Np)
(k + 1), respectively.

2) Pick Nr particles{
X

j
(1)(k + 1),X

j
(2)(k + 1), · · · ,Xj

(Nr)
(k + 1)

}
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with Wj =
∑γ

n=1 W
j
(n)(k + 1) such that

Nr = argmax
γ

{
Wj : Wj ≤ max

{
Rj ,W

j
(1)(k + 1)

}}
(49)

where Rj is a predetermined constant for model j that
controls the number of particles propagated for resam-
pling and Rj ≤ 1. For example, if we let Rj = 0.9, only
the larger particles whose total weight is up to 90%
will remain after resampling, and the other particles are
removed.

3) Let 〈x〉 denote rounding x to the nearest integer and
X̃j

n(k + 1) denote the new particle after resampling.
Particles replication is implemented by the following
recursions:
Initialization: i = 0.
Loop: i = i+ 1

Ni =

〈
W

j
(i)(k + 1)

Wj
×Np

〉
X̃j

n(k + 1) = X
j
(i)(k + 1) for

n = Np −Ni + 1, Np −Ni+1 + 2, · · · , Np

Wj := Wj −W
j
(i)(k + 1)

Np := Np −Ni.

Go back to loop until i = Nr − 1.

X̃j
n(k + 1) = X

j
(Nr)

(k + 1) for n = 1, 2, · · · , Nr.
The weights for the new particles are set to be equal.
That is

W̃ j
n(k + 1) =

1

Np
, n = 1, 2, · · · , Np. (50)

Notice that, in (49), if some particle has a significant weight

larger than Rj , we set Wj = W
j
(1)(k + 1), and this leads to the

assignment X̃j
n(k + 1) = X

j
(1)(k + 1) for n = 1, 2, · · · , Np.

Stage 5: Mixture. By averaging over the Np particles, the
state vector and the estimation error covariance matrix for
model j can be found by

X̂j(k + 1) =
1

Np

Np∑
n=1

X̃j
n(k + 1) (51)

P̂j(k + 1) =
1

Np

Np∑
n=1

{[
X̃j

n(k + 1)− X̂j(k + 1)
]
[·]T
}

(52)

respectively. Taking into account the update mode probability
for model j, the resultant state vector and the estimation error
covariance matrix then use the same equations as (38) and (39).

C. Posterior CRLB

In time-invariant statistical models, a commonly used lower
bound is the CRLB which is defined to be the inverse of the
Fisher information matrix (FIM). In our maneuvering mobile
tracking system, the estimated parameter vector is random since

it corresponds to three differently and randomly driven dynamic
models. Here, we consider the posterior CRLB provided as a
powerful tool for assessing the performance of tracking filters.

The estimation error covariance for model j is bounded by
the posterior CRLB [22] as

E

[(
X̂j(k)−X(k)

)(
X̂j(k)−X(k)

)T]
≥ J−1

j (k) (53)

where Jj(k) is the corresponding FIM for model j and J−1
j (k)

is the posterior CRLB. Let Zk denote the measurement vectors
collected up to time k, i.e., Zk = {Z(1),Z(2), · · · ,Z(k)}, and
p(Zk,Xj(k)) is the joint probability density function for model
j. From [22], the FIM is

Jj(k) =

E

⎡⎣(∂ log p
(
Zk,Xj(k)

)
∂Xj(k)

)(
∂ log p

(
Zk,Xj(k)

)
∂Xj(k)

)T
⎤⎦ .

(54)

The FIM Jj(k + 1) is a general nonlinear filtering framework
and can be given by the following recursion [22], [23]:

Jj(k + 1) = D22
j (k)−D21

j (k)
(
Jj(k) +D11

j (k)
)−1

D12
j (k)

(55)

where, under the case of Gaussian noise assumption, the ma-
trices in (55) are found as (56)–(59) shown at the bottom of
the page. The CRLB to be assessed in our simulation is based
on a fixed trajectory. That is, taking expectation in (56)–(59)
can be ignored. The initial value for FIM can be simply set as
Jj(0) = P−1(0). For the purpose of analysis, we suppose that
the maneuvering sequence defining model j is known in the
simulation.

D11
j (k) = −E

[(
∂ log p

(
Xj(k + 1)|Xj(k)

)
∂Xj(k)

)

×
(
∂ log p

(
Xj(k + 1)|Xj(k)

)
∂Xj(k)

)T
⎤⎦

=E
[(
Fj(k)

)T
Q−1

j (k)Fj(k)
]

(56)

D12
j (k) = −E

[(
∂ log p

(
Xj(k + 1)|Xj(k)

)
∂Xj(k)

)

×
(
∂ log p

(
Xj(k + 1)|Xj(k)

)
∂Xj(k + 1)

)T
⎤⎦

=E
[(
Fj(k)

)T ]
Q−1

j (k) (57)

D21
j (k) = − E

[(
∂ log p

(
Xj(k + 1)|Xj(k)

)
∂Xj(k + 1)

)

×
(
∂ log p

(
Xj(k + 1)|Xj(k)

)
∂Xj(k)

)T
⎤⎦

=
(
D12

j (k)
)T

(58)
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Fig. 5. Concept of dynamic BS sensor selection.

D22
j (k) = − E

[(
∂ log p

(
Xj(k + 1)|Xj(k)

)
∂Xj(k + 1)

)

×
(
∂ log p

(
Xj(k + 1)|Xj(k)

)
∂Xj(k + 1)

)T
⎤⎦

= −E

[(
∂ log p

(
Z(k + 1)|Xj(k + 1)

)
∂Xj(k + 1)

)

×
(
log p

(
∂Z(k + 1)|Xj(k + 1)

)
∂Xj(k + 1)

)T
⎤⎦

=Q−1
j (k)

+ E
[
HjT (k + 1)R−1(k + 1)Hj(k + 1)

]
. (59)

D. Dynamic BS Sensor Selection

In this MS tracking system, the fusion center selects the ac-
tive BS sensors and collects their measurement data to employ
the tracking algorithm. Before the MS is going to move outside
of the tracking region of the BSs, the fusion center needs to
activate the next BSs by filling proper working data (such as
those variables used in the recursion of the IMMPF algorithm)
to maintain the long-haul MS tracking.

As depicted in Fig. 5, suppose that the estimated state X̂(k)
is known to the fusion center at current instant k and we need
to select BSs at the next time k + 1. Then, the predicted state
Xn(k + 1) for the IMMPF algorithm can be calculated from
(41) by

Xn(k + 1) =
1

Np

3∑
j=1

Np∑
n=1

μj(k)f
(
X

j
n(k),Δt, j

)
(60)

where X
j
n(k) is obtained from (40).

As the predicted MS location is obtained, the search region
based on a given radius with the circle center determined from
Xn(k + 1) is used to find the proper candidates from the most
nearby BSs. However, if the previously active BSs are still
within this search region, for example, BS sensors A and B in
Fig. 5, they will remain in order to reduce the reset number of
working data due to changing BSs. For the new selected BSs,
the measurement equation h(·) needs to be modified based on
the new BS locations. Here, we suppose to use the same noise
variance matrix R(k + 1) for the new BSs.

IV. NUMERICAL RESULTS

In our simulation, the IMMEKF and IMMPF algorithms
along with two dynamic models and three dynamic models are
compared with bearing-only measurements observed from the
four BSs as depicted in Fig. 1. During the MS tracking period,
the MS trajectory includes three motion situations, i.e., CV, CA,
and CT.

First, we introduce the tracking trajectory used in our sim-
ulation. The distance between two successive BSs is 600 m.
The sampling duration Δt is 0.2 s, and the overall tracking
interval is 46 s. The initial position of the MS is at (0, 60),
the initial velocity is (0, 11 m/s), and the initial acceleration
is (0, 0). During the first 50 samples, the MS keeps the same
constant velocity as the initial value. During the 51th to the
100th samples, a constant acceleration (0, −1 m/s2) is boosted.
During the 101th to the 120th samples, a constant turn with
a turning rate of −0.25 is presented, and the acceleration
ceases. During the 131th to the 100th samples, another constant
acceleration (1 m/s2, 0) is boosted. From the 181th to the 230th
samples, the acceleration ceases, and constant velocity remains.

Next, we give the parameters used in the tracking algo-
rithms. The process noise parameters are σ2

1 = 0.05, σ2
2 =

0.17, σ2
3 = 0.05, and σ2

w = 0.0625. The standard deviation of
the measurement noise is σθ = 0.5◦. The number of particles
is Np = 300, and the resampling control parameter Rj = 0.95.
The coefficients of the Markovian transition matrix for the two-
model IMM are pii = 0.98 and pij = 0.02 for i �= j while those
for the three-model IMM are pii = 0.96 and pij = 0.02 for
i �= j. The initial mode probabilities for the two-model IMM
are μ1(0) = μ2(0) = 0.5 while those for the three-model IMM
are μ1(0) = 0.8 and μ2(0) = μ3(0) = 0.1.

To evaluate the tracking performance for different algo-
rithms, we calculate the root mean square (rms) metrics for rms
position tracking error and rms velocity tracking error with 100
Monte Carlo simulations. The rms metric is defined as

rms(k) =

√√√√ 1

L

L∑
l=1

(α̂l(k)− α(k))
2
+
(
β̂l(k)− β(k)

)2
(61)

where α(k) and β(k) denote the true MS position or velocity
at time k for the x- and y-axes, respectively, while α̂(k) and
β̂(k) denote the corresponding estimated results for the x-
and y-axes, respectively, and L = 100 for 100 Monte Carlo
simulations. The posterior CRLB for the three-model IMM
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Fig. 6. Comparison of rms position tracking error.

algorithm at time k can be referred to as J−1(k) obtained from
(55). Let J−1

i,j (k) denote the (i, j)th element in J−1(k), then the
rms metric of the posterior CRLB for position tracking error at
time k is

CRLBp(k) =
√
J−1
1,1(k) + J−1

4,4(k) (62)

and the rms metric of the posterior CRLB for velocity tracking
error at time k is

CRLBv(k) =
√
J−1
2,2(k) + J−1

5,5(k). (63)

Fig. 6 shows the comparison of rms position tracking errors
using the IMMEKF and IMMPF algorithms with two- and
three-model IMMs. The IMMPF algorithm significantly out-
performs the IMMEKF algorithm for the three-model IMM. For
the two-model IMM, the position tracking accuracy is heavily
deteriorated for both algorithms during a turning movement
because the CT model is not considered in the two-model IMM.
The posterior CRLB plotted in this figure is analyzed by taking
into account the three dynamic models with known maneu-
vering sequences. The three-model IMMPF algorithm has the
best performance in this comparison and much approaches the
posterior CRLB. Fig. 7 shows the comparison of rms velocity
tracking error for the same case as in Fig. 6. During the CV
motion period, we can notice that the two-model IMM algo-
rithms have slightly better rms error than the three-model IMM
algorithms because the CA model somewhat introduces more
modeling error noise. However, the advantage of the three-
model algorithms in alleviating the tracking error during CT
motion is more attractive.

Figs. 8 and 9 show the mode transition probabilities for
the three-model IMMPF algorithm and IMMEKF algorithm,
respectively. In these two figures, the correct model is identified
as a higher mode probability. As a mode can be identified cor-
rectly as a particularly high probability such as the CT model in
this simulation, the tracking error can be reduced significantly.
Hence, we can see that the rms position and velocity tracking
errors during CT motion are even smaller than those during

Fig. 7. Comparison of rms velocity tracking error.

Fig. 8. Mode transition probabilities for three models for the IMMPF
algorithm.

CA motion if ignoring the tracking error due to the inevitable
transient effect of mode interchange.

The bearing-only tracking method requires at least two BSs
to determine the intersection of two lines of antenna arrays
for the MS location. The more BSs the data fusion center
collects, the better the tracking performance is. As shown in
Fig. 10, the position rms errors of the three-model IMMPF
algorithm are compared by using different numbers of BSs.
Although the tracking performance can be improved with more
BSs, the filtering complexity also increases at the fusion center.
Here, we suppose to use the maximum of four BSs under the
concern of complexity for dynamic MS trajectory tracking.

In Fig. 11, we apply the proposed dynamic BS sensor se-
lection scheme for long-haul MS position tracking with the
three-model IMMPF algorithm. To ease our simulation, the
BS sensors marked as “+” are uniformly distributed with a
distance of 600 m between two nearby BSs. The only different
parameter here is that we assume that the measurement noise
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Fig. 9. Mode transition probabilities for three models for the IMMEKF
algorithm.

Fig. 10. Comparison of rms position tracking error versus different numbers
of BSs.

standard deviation is 5◦ for a possibly larger measurement noise
in the field. The initial location of the MS is at (−400, −200),
and the MS experiences CV, CA, and CT motion during the
tracking period. The positions for the fusion center to determine
a new group of BS sensors are marked as “	.” The dashed circle
indicates the region for the fusion center to determine the best
suitable BSs. In the first and second circles, two BSs located at
(−900, −300) and (−900, 300) are involved in the overlapped
area. Although the BS (−1500, 900) can be used for the second
	 point, we choose to maintain the two old BSs at first so as
not to reset too many working data in order to keep the tracking
algorithm as smooth as possible. However, as the MS moves
with an high acceleration between the 5th and 6th 	 points,
all new groups of BS sensors are required without using any
old BSs. The working data for the all new BSs in the tracking
algorithm should be carefully managed.

Fig. 11. Maneuvering MS tracking trajectory and the selected BS sensors in
a BS WSN.

V. CONCLUSION

In this paper, the nonlinear EKF and PF are integrated to
the IMM algorithm for maneuvering MS location estimation
with bearing-only measurements. In this system, the motion
of the MS is a complicated and nonlinear kinematic model.
We consider three general motion cases, CV, CA, and CT, in
the EKF and PF dynamic models. The IMM algorithm yields
the output by mixing the estimated results obtained from the
different filtering models. The performance of using the three-
model IMM is better than that using only CV and CA when
the MS makes a turn. The three-model IMM algorithm along
with either the EKF or the PF also does not show a significant
rms tracking performance loss due to the addition of the CT
model when the MS moves without a turn. It is worth to notice
the difference between the EKF and the PF. Although the EKF
has tailored the linear KF to be suited to the nonlinear filter-
ing problem, it computes Jacobian matrices for the first-order
gradient approximation. Its performance cannot be guaranteed
compared to some typical nonlinear algorithms such as the PF.
In our results, the IMMPF is superior to the IMMEKF, but at
the cost of 300 particles involved in the PF algorithm. However,
the IMMPF does not need to compute matrix inversion for the
Kalman gain, which is required in the IMMEKF algorithm.

In this paper, an efficient resampling method is proposed for
particle propagation over different time instants in the IMMPF
algorithm. The long-haul MS position tracking case is also
considered as a localization problem in a WSN, where the BSs
providing data for the fusion center are the active sensors and
may need to be changed during the tracking. In our proposal,
the predicted location from the IMM tracking algorithm is
used to find the next active BS sensors when the time of
changing BSs is up. In numerical analysis, the posterior CRLB
is also exploited to evaluate the performance of the tracking
algorithms in addition to the Monte Carlo simulation. The
numerical results show that the three-model IMMPF algorithm
outperforms the IMMEKF algorithm with a close performance
to the posterior CRLB.
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