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Step-Size FxLMS Algorithm
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Abstract—The filtered-X least mean-square (FxLMS) algorithm
is widely used for active noise control (ANC). A long tap-length is
usually required for some FxLMS applications, and consequen-
tially the convergence rate becomes very slow. In this letter, a new
variable tap-length and step-size FxLMS algorithm is proposed,
especially suited to a long tap-length filter. Taking into account
the lowpass filter effect in the secondary path of ANC, the new
algorithm is developed for the control filter with an unsymmetric
and two-sided exponential decay envelop over its impulse re-
sponse. Simulation results show that the new algorithm provides
faster convergence and cancellation performance compared to
previously proposed variable-step-size FxLMS algorithms.

Index Terms—Active noise control, FxLMS, secondary path,
two-sided exponential decay envelop.

I. INTRODUCTION

F ILTERED-X least mean-square (FxLMS) is the most pop-
ular algorithm in the application of active noise cancella-

tion (ANC) in terms of good noise reduction performance and
low implementation cost [1]. Owing to the existence of a sec-
ondary path between the reference microphone and the error
microphone in an ANC system, the FxLMS algorithm is em-
ployed to compensate for the secondary path effects in order to
cancel the primary noise [2], [3]. Although the FxLMS algo-
rithm used for ANC has some variants such as the lattice ANC,
frequency-domain ANC, delayless subband ANC, etc. [1], the
transversal filter structure is relatively simple from the aspect of
implementation.
In conventional FxLMS algorithms, the performance and

convergence properties have been well studied for the use
of a fixed step size. Taking into consideration some practical
circumstances, the required tap length of the control filter is
usually so long that a fixed-step-size FxLMS algorithm may
lead to slow convergence or large excess mean-square error.
Some modified LMS algorithms such as the normalized LMS
and correlation LMS are possible candidates that can improve
the convergence rate [1]. In addition to attaining fast conver-
gence, the variable-step-size FxLMS algorithm [4], [5] recently
drew a lot of attention because it can cope with both stationary
and nonstationary environments.
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In practical applications, the tap length of the primary plant
is unknown, and using excess tap length for the control filter
will lead to an increase of misadjustment in the LMS algo-
rithm. In this letter, we propose a new variable tap-length and
step-size FxLMS algorithm to improve the convergence rate
and performance. In the literature, there are some existing vari-
able-tap-length LMS algorithms [6]–[8] that consider a con-
stant exponential decay envelop for the impulse response of the
plant in a system identification model. For ANC applications,
the secondary path usually includes a lowpass filter, resulting
in a two-sided decay envelop over the impulse response. More-
over, the maximum output of the plant is not necessarily at the
middle of its impulse response. Hence, we develop the new vari-
able-tap-length FxLMS algorithm under the assumption of the
control filter having an unsymmetric and two-sided exponen-
tial decay envelop over its impulse response, and also develop
a new variable-step-size scheme ensuring global convergence.
Numerical results will show that the new FxLMS algorithm
has fast convergence and better steady-state mean-square de-
viation (MSD) performance compared to conventional FxLMS
algorithms.

II. A VARIABLE TAP-LENGTH AND STEP-SIZE
FXLMS ALGORITHM

A. System Model

The block diagram of a typical FxLMS algorithm is depicted
in Fig. 1, in which is an unknown plant and is
an adaptive filter used to compensate the secondary path
in order to cancel the disturbance. The background noise
is usually uncorrelated with and adds to the cancellation
error signal . The objective of is to minimize .
Denote the output of as and the impulse response
of as . Consider that is a sufficient tap length for

such that the coefficient vector of at time index
is and the input noise
vector . The can-
cellation error signal can be expressed as

(1)

where denotes linear convolution. The adaptive filter is
then updated in the negative gradient direction with step size
as , where is an
instantaneous estimate of the MSE gradient at time . Accord-
ingly, , where

, then

(2)
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Fig. 1. Block diagram of the FxLMS algorithm.

From (2), is included in the update equation of the adap-
tive filter coefficients, and is conventionally called the filtered-X
LMS or FxLMS algorithm. In general, is usually unknown,
and therefore, , where is an on-line
estimated impulse response of [2]. Here, we simply treat

in the following work.

B. Proposed Algorithm

The decay envelops of the impulse responses of and
are possibly presented on both sides of the maximum

output response. For example, usually contains a lowpass
filter and may have an unsymmetric decay envelop to
account for plant propagation delays. From (1), the z-transform
of the cancellation error signal is

(3)

Ignoring , a simple insight into (3) is that the cancellation
error approaches zero, i.e., , after the adaptive filter
converges. Hence, we can see that the optimal is to realize

(4)

Here, we generally consider that the impulse response of
has an unsymmetric decay envelop, where the left

tap length of the maximum response is while the right
tap length is , with the optimal coefficients written as

, where denotes
the maximum response. For simplicity, the following expo-
nential function is used to model the envelop of the impulse
response coefficients of :

(5)

where the decay factors and are positive constants, and
is a zero-mean i.i.d. Gaussian random sequence with

variance . Neglecting those coefficients of the exponentially
decayed magnitude less than 1/10, we can choose, at least,

and . Actually, using somewhat
larger and in the algorithm does not significantly affect
the performance.
The proposed FxLMS algorithm adaptively adjusts its tap

length and step size as time progresses. Denote by ,

, and the left-hand-side tap length, right-hand-side
tap length, and step size at time , respectively. We let

, where . Using the
notation and with subscripts

and to represent the -tap filter vector
and input vector, respectively, where

and
, we can rewrite (2) as

(6)

where denotes the zero vector.
To express the vector of at time by

the modeled part , we write
. Now, split into

three parts as , so
the total coefficient error is

(7)

From (4), we can express the output of as

(8)

Substituting (8) into (1) and using (7), the cancellation error
signal becomes

(9)

Substituting (9) for in (6) and subtracting on both sides
of (6), we obtain

(10)

where

(11)

and is the identity matrix.
To develop the recursive algorithm for , ,

and , the MSD of can be explored by expressing

(12)

where denotes norm and represents taking expecta-
tion. Assume that and are i.i.d. Gaussian sequences
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with variances and , respectively. According to a similar
assumption and analysis in [6], we have

(13)

where

(14)

(15)

(16)

(17)

and using (5) for , we have

(18)

(19)

where

(20)

(21)

The optimal tap length can be found by minimizing the MSD
with respect to and . Taking the partial deriva-
tives of with respect to and and set-
ting to zero, we obtain, after some mathematical manipulation,

(22)

(23)

where , obtained from (9).
The optimal can be found in a similar manner. How-

ever, becomes related to and , so
it is difficult to get a closed-form solution for the joint equa-
tions. Making the quasi-static assumptions
and , a suboptimal solution can be efficiently
found by replacing and by and ,
respectively, to calculate . Finally, we have

(24)

From (24), we can observe that when is ignored and the
adaptive filter approaches the perfect tap length,
, and thus approaches .

C. Global Convergence

Returning to (13), if it can be proved that the second-order
derivatives of with respect to , , and

are positive, theMSD is a convex function of ,
, and , and therefore, the recursions will find

the minimumMSD. Taking the second-order derivatives of (13)
with respect to , , and , respectively,
we have

(25)

(26)

(27)

In (25) and (26), because is usu-
ally smaller than with a normalized power of . From
(7) and (12), we have that .
Therefore, in (27), . From the above results,
(25)–(27) are all positive such that the MSD is a convex func-
tion of , , and . That is, we have
proved that the new FxLMS algorithm can converge to the min-
imum MSD.

III. SIMULATION RESULTS

Two numerical experiments are employed to compare the per-
formance of different FxLMS algorithms. For the first experi-
ment, is known and generated from a zero-mean white
Gaussian process with , , and

. The tap length is which is divided into
and . The characteristic of is similar

to [4] with 65 taps. For simplicity, we let equal here
and generate . Once the estimate of
is obtained as , the MSD is evaluated through a 100-run
Monte Carlo simulation by calculating . The
reference noise and the background noise are zero-mean i.i.d.
and uncorrelated Gaussian processes with variances and

, respectively.
In Fig. 2, the MSD performance is shown in decibels (dB).

Since the tap length of is 1024, we choose the same
tap length for conventional FxLMS algorithms, where the
largest step size, according to the description below (24), is
set as and the smallest step
size , which in 50000 iterations provides
steady-state performance close to that of the proposed algorithm.
In addition to the normalized FxLMS algorithm [1], a variable
step-size FxLMS algorithm, similar to [4], is simulated using

(28)

where is aweighting factor, , and is calculated
by with and

representing themaximumandminimumaverage powers
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Fig. 2. Comparison of MSD for different FxLMS algorithms.

Fig. 3. Convergence comparison of tap length and step size for proposed algo-
rithm and other FxLMS algorithms. (a) Tap lengths and . (b) Step
size .

of , respectively, and ,
where is an averaging constant with here.
is estimated using the average of the first 100 iterations of

multiplied by 1.3, while using the average of the
last 100 iterations of multiplied by 0.7. The proposed
algorithm with (24) achieves excellent convergence speed and
MSD performance. However, if we consider the simple variable
step size used in [7] for the new variable-tap-length method
with , the convergence
rate becomes worse since the step size is still lacking flexibility
compared to the proposed algorithm. When the step size
is used with the new variable-tap-length method, the MSD
performance significantly degrades in spite of a fast convergence
rate. Fig. 3(a) and (b) show the convergence curves of tap lengths
and step sizes with the proposed and other FxLMS algorithms,
respectively. To prevent from overestimating the tap lengths, the
proposed algorithm terminates the growth of tap lengths when
the norms of the new 20 taps are less than for and

for , providing that the total tap length approaches
1024 and the step size remains a larger value for faster conver-
gence compared to the variable step size method [4].
For the second experiment, assume that and are

knownwith characteristics similar to the data included in [1]with
tap lengths 145 and 51, respectively. The decay factors used in
this case are and such that and

are set in our algorithm. Since the tap lengths are shorter

Fig. 4. Comparison of NRR for different FxLMS algorithms.

than those used in the first experiment, the norms of only the
last 10 new taps are calculated to terminate the tap growth. The
noise variances are the same as those used in thefirst experiment.
Here, the noise reduction performance is evaluated instead of
the MSD. We define the noise reduction ratio NRR (dB) as

(29)

where for simplicity, can be implemented by ensemble
average. Fig. 4 compares the NRR for different algorithms.
The proposed algorithm also has superior NRR performance
because of its fast convergence and minimum MSD properties.

IV. CONCLUSIONS

Normalized and variable step-size LMS algorithms are
conventionally tailored for FxLMS. Since the plant and sec-
ondary path models are usually unknown, the parameter setup
of FxLMS is almost heuristic, so that it is not easy to find a
good tradeoff between convergence rate and performance. In
contrast, the proposed algorithm shows a promising result with
self-adjusting tap lengths, especially suited to a long-tap-length
design. Under the assumption of a two-sided exponential decay
envelop, the new algorithm even results in minimum MSD.
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