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Abstract. A multirate Kalman filtering algorithm for target tracking with high-order correlated noise is proposed.
The measurement signal is first split into subbands using a filter bank. Then, the correlated noise in each subband
is modeled using a first-order AR process and the AR parameters are identified online. Finally, a multirate Kalman
reconstruction filter is used to obtain the state estimate. This method can be directly incorporated into the IMM
algorithm, resulting in an effective tracking scheme. Simulations show that the new multirate processing scheme
can significantly improve tracking performance.
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1. Introduction

The Kalman filter has been widely used in the radar target tracking problem. In that applic-
ation, the measurement noise is usually assumed to be zero-mean white Gaussian. However,
some researchers [1, 9] have reported that when the sampling rate of a radar system is high,
the measurement noise is correlated. A common method to deal with this problem is to model
the correlated noise by an AR process and include it in the state-space model. There are
two ways of constructing the state-space model. One is the state augmentation method which
explicitly includes the correlated noise in the state vector. This will result in the increase of the
state dimension. The other is the decorrelation method which decorrelates the measurements
using a filtering scheme. This approach changes the measurement equation, while the state
dimension remains the same. In addition to the increase of the computational complexity,
the state augmentation method can be ill-conditioned. Thus, the measurement decorrelation
method is preferable in practice [1, 2, 6, 9].

While the measurement decorrelation method can solve the correlated noise problem, the
only problem that remains is how to find the AR parameters. Many researchers assume that
those parameters are known in advance. This may not be proper in real-world applications
since the noise characteristics are not always known and, more importantly, they can be
time-varying. In [1], we proposed an online parameter estimation method for a first-order
AR-correlated noise. Simulation results showed that the algorithm in [1] can achieve almost
the same tracking performance as when the AR parameters are exactly known. However,
practical colored noise may not be well-modeled by the first-order AR process. Thus, higher
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104 Dah-Chung Chang and Wen-Rong Wu

Figure 1. A typical multirate signal processing system.

order modeling is necessary. Unfortunately, it is found that a straightforward extension of the
method in [1] is difficult. In this paper, we propose a new method to solve the problem.

The basic idea is that if a high-order correlated process can be split into subbands, then the
shape of its power spectrum in each subband may become simple enough that a first-order AR
model is sufficient. In other words, instead of a higher order AR noise model in fullband, we
may consider a set of first-order AR models in subbands. Using this approach, we can then
apply the method developed in [1] to estimate the AR parameters. Since the measurement
signal is split into subbands, the state vector has to be represented in the subbands as well.
This results in a multirate state-space representation of the target motion. A multirate Kalman
filtering scheme, which estimates the state from its subband measurements, was proposed
recently [13, 14]. We then use this algorithm to complete our tracking scheme. Note that the
state transition matrix defined in the multirate Kalman filtering [13] is inherently singular. The
decorrelation method in [1] requires the inverse of this state transition matrix. To overcome
the problem, we use another decorrelation method which does not involve the matrix inverse.

This paper is organized as follows. Section 2 briefly reviews the multirate Kalman filter-
ing algorithm [13] and the online identification algorithm for the first-order AR-correlated
noise [1]. In Section 3, we describe target tracking with high-order AR-correlated noise using
the multirate Kalman filtering scheme. Simulation results are demonstrated in Section 4 and
conclusions are drawn in Section 5.

2. Multirate Kalman Filtering and Noise Identification

2.1. MULTIRATE KALMAN FILTERING

Multirate signal processing has attracted great attention recently. A typical system is shown
in Figure 1. The input signal is first split into a set of subband signals using anM-channel
analysis filter bank andM-fold decimators. Note that subband signals may be contaminated
by noise. The processed signals are up-sampled by expanders and then processed by anM-
channel synthesis filter bank to form the output signal. Many algorithms have been proposed
[21, 24] to design the analysis/synthesis filters so that the output signal can perfectly recon-
struct the input signal. However, most of them do not consider the subband noise. The work
in [13] first considers the use of the Kalman filtering scheme for the signal reconstruction.
The advantage of this approach is that the subband noise is explicitly taken into account and
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Maneuvering Target Tracking with High-Order Correlated Noise105

Figure 2. The multirate Kalman synthesis filter.

the result is optimal in the minimum mean square error sense. The structure of the multirate
Kalman synthesis filter is depicted in Figure 2. Now, we briefly review the algorithm. Let the
input signalx(n) be modeled by apth-order AR process.

x(n) = a1x(n− 1)+ a2x(n − 2)+ · · · + ap(n− p)+ w(n) , (1)

wherew(n) is a zero-mean white Gaussian driving noise with varianceQ(n). The above
equation can be rewritten as a state equation,

Xp(n) = ApXp(n− 1)+Gpw(n) , (2)

Xp(n) = [x(n), x(n − 1), · · · , x(n− p + 1)]T , (3)

Ap =


a1 a2 · · · ap
1 0 · · · 0

0
. . . · · · 0

0 0 1 0


p×p

, (4)

Gp = [10· · · 0]Tp×1 . (5)

Since the measurements for the multirate Kalman synthesis filter are obtained from the
outputs of the analysis filters, we increase the dimension of the input signal vectorX(n) to the
filter lengthL (usuallyL > p), i.e.,

X(n) = [x(n), x(n − 1), · · · , x(n− L+ 1)]T . (6)

Then, the state equation becomes

X(n) = AX(n− 1)+Gw(n) . (7)
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106 Dah-Chung Chang and Wen-Rong Wu

The matrixA andG (of dimensionsL×L andL×1) can be easily derived fromAp andGp.
As we can see from Figure 2, the subband signal isM-fold down-sampled. Let the time index
after down-sampling bem wheren = Mm + l, l = 0,1, · · · , M − 1. Also, let the analysis
filter response, the subband measurement, and the subband noise for thei-th band behi(.),
zi(m), andvi(m), respectively. Then, we can write the measurement equation as

Z(m) = HX(m)+ V (m) , (8)

Z(m) = [z0(m)z1(m) · · · zM−1(m)]T , (9)

V (m) = [v0(m)v1(m) · · · vM−1(m)]T , (10)

H =


h0(0) h0(1) · · · h0(L− 1)
h1(0) h1(1) · · · h1(L− 1)
...

...
...

...

hM−1(0) hM−1(1) · · · hM−1(L− 1)

 . (11)

Note that the stateX(k) in (7) and the measurement signalZ(k) in (8) have different rates,
i.e., {X(k), k = 0,1,2, · · ·} and{Z(k), k = 0,M,2M, · · ·}. Using the recursive relation in
(7), we can obtain

X(n+M) = AMX(n)+GMW(n+M) , (12)

GM = [G AG A2G · · ·AM−1G] , (13)

W(n+M) = [w(n+M)w(n+M − 1) · · ·w(n+ 1)]T . (14)

Then, Equation (12) can be written as

X(m+ 1) = AMX(m)+GMW(m+ 1) . (15)

From the above results, we have a multirate state-space model describing the input signal and
the measurement.

X(m+ 1) = AMX(m)+GMW(m+ 1) , (16)

Z(m) = HX(m)+ V (m) . (17)

Thus, the standard Kalman filtering scheme can be applied to obtain the state estimate. Since
the state equation is represented by the time indexm andn = Mm, the Kalman filter outputs
a state estimate everyM samples. To achieve better reconstruction results, we can take the
results after some time delay.

x̂(n− l)
x̂(n− l − 1)

...

x̂(n− l −M + 1)

 = [0M×l IM×M 0M×(L−l−M)
]
X̂(m) , (18)

wherel is the delay ranging from 0 toL−M, 0 is a zero matrix, andI is an identity matrix.
As l increases, the performance of reconstruction is improved. The best reconstruction result
is obtained by choosingl = L−M.
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Maneuvering Target Tracking with High-Order Correlated Noise107

2.2. IDENTIFICATION OF FIRST-ORDER AR-CORRELATED NOISE

The work in [1] uses the measurement decorrelation method. Consider a one-dimensional
tracking problem.

X(n+ 1) = φX(n)+Gw(n+ 1) (19)

z(n) = HX(n)+ v(n) , (20)

whereX(n) is the state vector,φ is the state transition matrix,z(n) is the measurement, and
w(n) andv(n) are the state and the measurement noises, respectively. Rogers [2] modeled the
correlated noise as a first-order AR process, which can be described by

v(n) = αv(n− 1)+ η(n) , (21)

whereη(n) is zero-mean white Gaussian noise with varianceσ 2
η . Define a new measurement

z̄(n) as

z̄(n)
4= z(n)− αz(n− 1)

= H̄ x(n)+ η̄(n) , (22)

where

H̄ = H(I − αφ−1), (23)

η̄(n) = αφ−1HGw(n+ 1)+ η(n) (24)

≈ η(n) . (25)

In (24), the first term of the right-hand side is usually small and can be neglected. Thus,
η̄(n) can be treated as a white process. Usingz̄(n) as the measurement, the standard Kalman
filter can be applied. To describe the algorithm in [1], we assume that the measurement is
the target’s position. LetX(n) = [x(n) s(n) a(n)]T , wherex(n), s(n), anda(n) are target
position, velocity, and acceleration, respectively. We then have the measurement equation

z(n) = [1 0 0]X(n)+ v(n) . (26)

Since measurements contain the state variablex(n), the direct estimation of the AR parameters
is difficult. Note thatx(n) corresponds to a lowpass signal. Thus, we can use a highpass filter
to remove it. The specially designed highpass filter in [1] has thez-transform as follows:

F(z) = (1− z−1)2

(1− ρz−1)2
, (27)

whereρ < 1. It was shown in [1] that for the constant velocity target, the state variable can
be completely removed using this filtering operation. Let the input and the output of the filter
F(z) bez(n) andu(n), respectively. Denote the autocorrelation function ofu(n) asr(.). Then,
the parametersα andσ 2

η can be found as follows:

α = −(ξ3+ ξ2)−
√
(ξ3+ ξ2)2− 4ξ3(ξ3+ ξ2+ ξ1)

2ξ3
(28)
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108 Dah-Chung Chang and Wen-Rong Wu

and

σ 2
η = −

[−2ρ3α2 + (1− ρ4)α + 2ρ]r(0)+ [(ρ2+ ρ4)α2 + (2ρ3− 2ρ)α − (ρ2+ 1)]r(1)
(1+ ρ2)α + (2ρ − 4)

. (29)

where

αb = r(1)

r(0)
(30)

ξ3 = (ρ + 1)3 (31)

ξ2 = (−2ρ2− 10ρ− 4)+ (−6ρ − 2)αb (32)

ξ1 = (−ρ3− 3ρ2+ 5ρ + 7)+ (8ρ + 8)αb (33)

ξ0 = (2ρ2 + 2ρ − 4)+ (−2ρ − 6)αb . (34)

Substitutingr(1) andr(0) with their estimateŝr(1) and r̂(0), we can obtain̂α(n) andσ̂ 2
η (n).

The estimateŝr(1) andr̂(0) at timen can be calculated as

r̂n(0) = βr̂n−1(0)+ (1− β)u2(n) (35)

r̂n(1) = βr̂n−1(1)+ (1− β)u(n)u(n− 1) , (36)

where 0< β < 1 is a forgetting factor.

3. Multirate Kalman Tracking Algorithm for High-Order Correlated Noise

3.1. NOISE IDENTIFICATION IN SUBBAND

Although the AR identification scheme described in Section 2 is effective, it can only be
applied to the first-order AR process. Practical correlated noise may not be well modeled
by the first-order AR process. Here, we consider extending its application to high-order AR-
correlated noise. However, we find that it is difficult to extend the similar method as described
in Section 2 to identify high-order AR noise. Here, we propose another approach. Our obser-
vation is that the parameter estimation problem may be viewed as a spectrum fitting problem.
The power spectrum of a first-order AR model is too simple to fit a general complicated
spectrum. However, if we can split the noise signal into subbands, then the shape of its
power spectrum in each subband will become much simpler. In this case, the first-order AR
modeling may be sufficient. To achieve this, the measurement signal has to be decomposed
into subbands. Let the measurement equation be the same as that in (26), i.e.,

z(n) = x(n)+ v(n) . (37)

The measurement signal is first split into a set of subband signalszi(m) by anM-channel ana-
lysis filter bank andM-fold decimators. The subband measurement signals can be expressed
as

zi(m) = xi(m)+ vi(m) , (38)

wherexi(m) is the i-th subband signal ofx(n) andvi(m) is that ofv(n). Thus, a multirate
Kalman filtering structure as depicted in Figure 2 can be applied to obtain the state estimate.
It is worth noting that the formulation here is not exactly identical to that in Figure 2. The noise
vi(m)’s in Figure 2 are added in the subbands, whilevi(m)’s in (38) are added in the fullband.
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Maneuvering Target Tracking with High-Order Correlated Noise109

As a conseqeunce, the noisevi(m)’s in Figure 2 are uncorrelated, whilevi(m)’s in (38) are
correlated. Fortunately, the correlations are usually small and their effect can be neglected.

Now, let us see what the target motion will become in the subband domain. From (11), we
can see that

xi(m) =
L−1∑
k=0

hi(k)x(mM − k) . (39)

Equation (39) can be interpreted asxi(m) is a linear combination of the functionsx(mM),
x(mM − 1), . . ., and x(mM − L + 1). The following observation is useful in the later
discussion.

Observation: The linear combination ofN-th order polynomials is also anN-order
polynomial.

Thus, if the target has a constant velocity, thenx(n − i), i = 0,1, . . ., is a linear function
of time and so isxi(m). If the target has a constant acceleration, thenx(n − i), i = 0,1, . . .,
is a quadratic function of time and so isxi(m). We can then conclude that the target motion
in each subband has similar characteristics as that in fullband. The velocity/acceleration in
each subband is different from that in the fullband only by a factor. As a result, the noise
extraction method in [1] can be directly applied in subband. We now conduct a simulation to
verify this result. We use a 5-band cosine-modulated analysis bank and the prototype filter has
20 taps. The frequency responses of the filter bank are plotted in Figure 3. We consider the
same target track used in [1] and [7], except that the sampling period here is 0.01. The original
target track and the subband tracks are shown in Figure 4 in which thex-axis is the sample
numbers and they-axis is the target position in dB unit. It is clear that the target tracks in the
subbands are very similar to the original track and there exists a nearly constant difference.
This is consistent with our assertion above.

3.2. THE NEW TRACKING ALGORITHM

Assume that the measurement is the target position which is corrupted by correlated noise. The
measurement signal is first passed through an analysis filter bank and then the state estimate
is performed by the multirate Kalman synthesis filter. As we described, the state dimension
has to be increased toL, the length of the analysis filter. Define the state vector as

X(n) = [x(n), x(n − 1), · · · x(n− L+ 1), s(n), s(n − 1), · · ·
s(n − L+ 1), a(n), a(n − 1), · · · , a(n− L+ 1)]T , (40)

wherex(n), s(n), anda(n) are the target position, velocity, and acceleration, respectively. The
target state equation can be written as

X(n+ 1) = FX(n)+Gw(n+ 1) , (41)

wherew(n) is the target acceleration increment assumed to be a white Gaussian process [15]
andF is the 3L× 3L transition matrix. For example, ifL = 3, then

F =
 F11 F12 F13

F21 F22 F23

F31 F32 F33

 , (42)
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Figure 3. The amplitude response of the analysis bank.

Figure 4. The original and subband target tracks.
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Maneuvering Target Tracking with High-Order Correlated Noise111

where

F11 = F22 = F33 =
 1 0 0

1 0 0
0 1 0

 ,

F12 = F23 =
 T 0 0

0 0 0
0 0 0

 , F13 =
 T 2/2 0 0

0 0 0
0 0 0

 ,

F21 = F31 = F32 =
 0 0 0

0 0 0
0 0 0

 ,

(43)

andT is the sampling period. The vectorG is a 3L× 1 column vector, which is

G = [T 2/2 0· · · 0 T 0 · · · 0 1 0· · · 0]T . (44)

Replacing the time indexn by its decimated versionm, we can write the multirate state
equation as

X(m+ 1) = FMX(m)+GMW(m+ 1) , (45)

GM = [G FG · · ·FM−1G] . (46)

Let the subband inputs to the multirate Kalman synthesis filter bezi(m), i = 0,1, · · · , M−1.
Then, the multirate measurement equation is

Z(m) = HCX(m)+ V (m) , (47)

Z(m) = [z0(m)z1(m) · · · zM−1(m)]T , (48)

H =


h0(0) h0(1) · · · h0(L− 1)

h1(0) h1(1) · · · h1(L− 1)
...

...
...

...

hM−1(0) hM−1(1) · · · hM−1(L− 1)

 , (49)

C = [IL×L 0L×L 0L×L] , (50)

whereV (m) = [v0(m)v1(m) · · · vM−1(m)]T represents the correlated noise vector in the sub-
band. Eachvi(m) is modeled using a first-order AR process. Thus,V (m) can be rewritten as
the following equation.

V (m) = DV (m− 1)+ E(m) , (51)

D =


α0 0 · · · 0
0 α1 · · · 0
...

...
. . .

...

0 0 · · · αM−1

 , (52)
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112 Dah-Chung Chang and Wen-Rong Wu

E(m) = [η0(m)η1(m) · · · ηM−1(m)]T , (53)

whereαi is the AR coefficient for the(i+1)th subband andηi(m) is a white Gaussian driving
noise for the(i + 1)th subband.

The measurement decorrelation method needs to compute the artificial measurement
defined as

Z̄(m) = Z(m)−DZ(m− 1) (54)

= H̄X(m)+ Ē(m) , (55)

where

H̄ = HC −DHC(FM)−1 (56)

Ē(m) = DHC(FM)−1GMW(m)+ V (m)−DV (m− 1)

≈ V (m)−DV (m− 1)

= E(m) . (57)

Unfortunately, the matrixFM is a singular matrix and its inverse does not exist. The con-
ventional decorrelation method cannot be used here. Therefore, we propose to use another
decorrelation method. Let

Zb(m) = Z(m+ 1)−DZ(m) (58)

= HbX(m)+ Eb(m+ 1) , (59)

where

Hb = HCFM −DHC
Eb(m+ 1) = HCGMW(m+ 1)+ V (m+ 1)−DV (m)

≈ V (m+ 1)−DV (m)
= E(m+ 1) . (60)

Although this decorrelation method can avoid the calculation of(FM)−1, it requires the
measurementZ(m + 1). This will delay the tracking by one block samples (Mto 2M − 1
samples). If the delay is not desirable, we may use (45) to output the predicted state. The other
method is to use linear extrapolation to obtain an estimate ofX(m) − X(m − 1) such that a
measurement equation involvinḡZ(m) can be used. We now describe this method in detail.
Using the relationZ̄(m) = Zb(m− 1), we have

Z̄(m) = Zb(m− 1) (61)

= HbX(m− 1)+ E(m) (62)

= HbX(m)−Hb[X(m)−X(m− 1)] + E(m) (63)

≈ HbX(m)−HbFM[X̂(m− 1)− X̂(m− 2)] + E(m) . (64)

When the target is nonmaneuvering, this extrapolation error is almost zero. When the target is
maneuvering, there is some performance degradation using this approximation. From (64), we
can see that to useHb (instead ofH̄ ), a termHb[X(m)−X(m− 1)] must be subtracted from
Z̄(m). When the target has a constant velocity, this term is constant also. We can consider
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Maneuvering Target Tracking with High-Order Correlated Noise113

it as a bias term. From the above derivation, we can have the new multirate Kalman filter-
ing algorithm for decorrelating high-order AR-correlated noise. The state and measurement
equations can be written as follows:

X(m+ 1) = FMX(m)+GMW(m+ 1) , (65)

Z̄(m) = HbX(m)− B(m)+ E(m) , (66)

B(m) = HbFM [X̂(m− 1)− X̂(m− 2)] , (67)

whereX̂(m− 1) andX̂(m− 2) can be obtained from the past state estimations using Kalman
filtering. Note that both the prediction method and the method in (66) are suboptimal. As
shown in the expression of (18), the multirate Kalman filter will output a state estimate every
M samples and we have many ways to output data. The delay ranges froml = 0 to l = L−M
in (18). Note that forl = 0, there still exists a 0 toM − 1 sample delay. This is due to the
multirate processing effect mentioned above. This delay can be reduced by choosing a small
subband number. Depending on the applications, a certain degree of delay can be tolerable
[16, 19].

In this paragraph, we discuss the computational complexity of the proposed algorithm.
A Kalman filter requiresO(3ln2) multiplications for each iteration wherel and n are the
measurement and state dimensions, respectively. Since the dimension of the multirate Kalman
filter is greatly increased, the computational complexity should be much higher than that of
the single rate Kalman filter. Fortunately, there are many zeros in the state transition matrix.
Thus, the computational complexity can be effectively reduced. In general, we can say that the
required computational complexity for the multirate Kalman filter is close to that of the single
rate Kalman filter. Only the storage for the computed parameters will be higher. Of course,
extra computations are necessary for the filter bank operations.

4. Simulations

We use a one-dimensional range tracker to demonstrate the effectiveness of the proposed
algorithm. The IMM algorithm [20] is used as the tracking algorithm, which is implemented
using a second-order model for the nonmaneuvering mode and two third-order models for the
maneuvering mode; one has process noise and the other has no process noise. The target state
equations corresponding to (41) are described below. For notational simplicity, only the case
for L = 1 is shown.

1. Nonmaneuvering mode,[
x(n + 1)
s(n + 1)

]
=
[

1 T

0 1

] [
x(n)

s(n)

]
+
[
T

1

]
w(n+ 1) (68)

2. Maneuvering mode, x(n + 1)
s(n + 1)
a(n+ 1)

 =
 1 T 1

2T
2

0 1 T

0 0 1

 x(n)s(n)

a(n)

+
 1

2T
2

T

1

wm(n+ 1) (69)
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114 Dah-Chung Chang and Wen-Rong Wu

wherew(n) andwm(n) are white noises. In the simulation, the sampling period is taken as
0.01 sec. The total tracking interval is 60 sec. In other words, there are 6,000 measurement
samples. The maneuvering occurs from the 20th to the 40th sec with a constant acceleration
of 40 m/sec2 (about 4g). The target track is the same as that shown in Figure 4.

The three IMM models are defined as follows:

Model 1: a constant velocity model for nonmaneuvering. The process noise variance is
E[w(n)w(n)] = 10−4 (m/sec2)2.

Model 2: a large acceleration model for maneuvering. The process noise variance isE[wm(n)
wm(n)] = 402 (m/sec2)2.

Model 3: a constant acceleration model for maneuvering. The process noise is zero, i.e.,
wm(n) = 0.

The Markovian transition probability matrix of the three models is chosen as

[pij ] =
 0.99 0.01 0.00

0.33 0.34 0.33
0.00 0.01 0.99

 . (70)

Here, we assume that the correlated noise is a third-order AR process described by

v(n) = 0.8v(n− 1)− 0.7v(n− 2)+ 0.6v(n − 3)+ η(n) , (71)

whereη(n) is a zero-mean white Gaussian noise with variance 1002 m2. The power spectrum
of the correlated noise has two peaks; one is around the zero frequency, the other around
0.5π. The amplitude of the power spectrum is plotted in Figure 5. A 5-band cosine-modulated
analysis bank with the 20 taps prototype filter is used. The frequency responses of the filter
bank are plotted in Figure 3. The simulation setup is the same as that in [1]. A total of 500
Monte Carlo runs are carried out and the averaged root mean square error (RMSE) is used as
the performance criterion.

RMSE(n) =
√√√√ 1

N

N∑
i=1

[x(n)− x̂i (n)]2, n = 1,2, · · · , 6000; N = 500, (72)

wherex̂i (n) denotes the state estimate of theith Monte Carlo simulation for thenth sample.
The two parameters used in the noise extraction process were chosen asρ = 0.095 and

β = 0.995. We used these two parameter values in each subband. The identification results
(a single run) for the AR coefficients in the subbands are shown in Figure 6 and their corres-
ponding driving noise variances are shown in Figure 7. As we can see, the estimated results for
these two parameters do not experience significant varying during the maneuvering. However,
variations at the beginning are large. This is due to the use of a largeβ. To speed up the
convergence, we letβ be time-variant. Starting with smaller values at the initial,β increases
gradually. The following function is used forβ.

β(m) = 0.995− 0.5e−m/λ , (73)

whereλ is a decay constant. Given a desired value at a desired time,λ can be easily calculated.
For example, if we setβ(m0)=0.994, then

λ = m0/ log(0.5/0.001) . (74)
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Figure 5. The power spectrum of the three-order AR colored noise.

Figure 6. The learning curves for the AR coefficients in subbands.
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Figure 7. The learning curves for the variances of AR driving noise in subbands.

The parameterβ will finally converge to 0.995 asm goes to infinity. Here, we setm0 = 400
in the simulation.

Using the correlated noise given by (71), we compare the tracking performance of four
algorithms. In the first one, we consider the conventional Kalman filtering algorithm in which
there is no other processing for the correlated noise. In this case, the white noise assumption
is violated and the Kalman filter is no longer the optimal filter. In the second one, we assume
that the parameters of the third-order AR-correlated noise are exactly known. Then, we can
directly apply the decorrelation method in (58). Using the expression in (19) and (20), the
decorrelated measurement equation is

z̄(n) = H̄x(n − 3)+ η(n) (75)

H̄ = Hφ3− α1Hφ
2− α2Hφ − α3H , (76)

whereα1,α2, andα3 are the three AR coefficients andη(n) is the white Gaussian driving noise.
In the third one, we use the proposed subband processing algorithm. Here, we consider the
optimal result in which the output delay is set to 15 (l= 15) and (58) is used for decorrelation.
Later, we will consider the case wherel = 0 and (66) is used. In the fourth one, we apply the
first-order AR-decorrelation algorithm proposed in [1] (although the noise is third-order AR-
correlated noise). The tracking results for target position, velocity, and acceleration are shown
in Figures 8–10. We can see that the proposed subband first-order AR-decorrelation process
has the best performance. The performance of the exact third-order AR-decorrelation method
is still inferior to the proposed one. This is due to the delay operations (smoothing) used in
the proposed algorithm. In Figure 11, we show the comparison of model probability in the
IMM algorithm. Model 1 corresponds to the case where the target has a constant velocity and
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Figure 8. Performance comparison for target position tracking.

model 3 corresponds to the case where the target has a constant acceleration. We can find
that the probabilities associated with these two models are not significantly different for the
algorithms in Figures 11(a, b, d). In contrast, the proposed algorithm, which is in Figure 11(c),
can clearly tell if the target is maneuvering or nonmaneuvering. Apparently, the tracking
performance of the proposed algorithm is superior to others.

Although the proposed algorithm performs satisfactorily in the above simulations, the
delay is 15. In Figures 12–14, we compare the performance forl = 15 andl = 0. As we can
see, the performance difference between these two cases is not significant, especially when
the target is nonmaneuvering. The above simulations are performed with the decorrelation
method in (58). Note that the decorrelation method in (58) still requires a delay. Thus, we
perform other simulations to test the tracking performance without this delay. The results are
also shown in Figures 12–14. In these figures, the biased decorrelation method corresponds to
that in (66) withoutB(m) and the bias-removed decorrelation method corresponds to that in
(66) withB(m). It is apparent that the biased decorrelation has poor performance after target
maneuvering since the bias is proportional to target velocity. We also can see that the perform-
ance difference between the bias-removed decorrelation method and the delayed decorrelation
method in (58) is small when the target is nonmaneuvering. That is because in this case the
bias is a constant. When target is maneuvering, the difference between two successive position
samples is not constant, the bias-removed algorithm is then somewhat degraded. Figure 15
shows no obvious difference in modeling probability for the four simulation cases considered
here.
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Figure 9. Performance comparison for target velocity tracking.

Figure 10. Performance comparison for target acceleration tracking.
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Figure 11. Comparison of model probability in the IMM algorithm.

Figure 12. Performance comparison for target position tracking.

Lic
en

se 
Agre

em
en

t S
ub

jec
t t

o S
pr

ing
er



120 Dah-Chung Chang and Wen-Rong Wu

Figure 13. Performance comparison for target velocity tracking.

Figure 14. Performance comparison for target acceleration tracking.
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Figure 15. Comparison of model probability in the IMM algorithm.

5. Conclusions

We have proposed a new algorithm for maneuvering target tracking with high-order correlated
noise. The distinct feature of our approach is that we use the subband processing technique.
The measurement signal is first decomposed into subbands and the correlated noise in each
band is modeled by a first-order AR process. An online AR identification algorithm is applied
to obtain the corresponding AR parameters. A multirate state space model is then built and a
newly developed multirate Kalman synthesis filter is used to obtain the state estimate. This al-
gorithm can be incorporated into the IMM algorithm such that the performance can be further
enhanced. Simulations show that the proposed algorithm outperforms the existing algorithms.
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